Nonlinear PDE with vector fields

被引:0
|
作者
David Holcman
机构
[1] Université Pierre et Marie Curie (Paris VI),Mathematical Physics and Geometry of Partial Differential Equations
来源
关键词
Vector Field; Scalar Curvature; Minimum Point; Sobolev Inequality; Mountain Pass;
D O I
暂无
中图分类号
学科分类号
摘要
A nonlinear PDE on a compact manifold is proposed where we use a given vector field. The nonlinear term involves the critical Sobolev exponent growth. To obtain the existence of solutions, conditions linking a critical point of the field and the scalar curvature are found. The second point is devoted to studying the viscosity limit of the solutions when the Laplacian term tends to zero.
引用
收藏
页码:111 / 137
页数:26
相关论文
共 50 条
  • [1] Nonlinear PDE with vector fields
    Holcman, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (10): : 871 - 876
  • [2] Nonlinear PDE with vector fields
    Holcman, D
    JOURNAL D ANALYSE MATHEMATIQUE, 2000, 81 (1): : 111 - 137
  • [3] Multiple lump solutions and their interactions for an integrable nonlinear dispersionless PDE in vector fields
    Batool, Tahira
    Seadawy, Aly R.
    Rizvi, Syed T. R.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (02): : 264 - 287
  • [4] Approximate solutions of vector fields and an application to Denjoy-Carleman regularity of solutions of a nonlinear PDE
    Braun Rodrigues, Nicholas
    da Silva Jr, Antonio Victor
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (08) : 1452 - 1471
  • [5] A NONLINEAR THEORY OF VECTOR FIELDS
    URBAKH, VI
    SOVIET PHYSICS JETP-USSR, 1959, 8 (01): : 143 - 148
  • [6] ON THE REGULARITY OF VECTOR FIELDS UNDERLYING A DEGENERATE-ELLIPTIC PDE
    Battaglia, Erika
    Biagi, Stefano
    Tralli, Giulio
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) : 1651 - 1664
  • [7] Anisotropic wavelets along vector fields and applications to PDE's
    Canuto, C
    Tabacco, A
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2003, 28 (1C): : 89 - 105
  • [8] On the similarity principle for planar vector fields: Application to second order PDE
    Meziani, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) : 1 - 19
  • [9] Nonlinear dynamical systems and decompositions of vector fields
    Steeb, WH
    Scholes, T
    PHYSICA SCRIPTA, 2005, 72 (01) : 16 - 18
  • [10] Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation
    P. R. da Silva
    I. S. Meza-Sarmiento
    D. D. Novaes
    Differential Equations and Dynamical Systems, 2022, 30 : 675 - 693