Effect of Cr2O3 Coating on LiNi1/3Co1/3Mn1/3O2 as Cathode for Lithium-Ion Batteries

被引:0
|
作者
Cuixia Cheng
Huiyang Yi
Fang Chen
机构
[1] Hubei Normal University,Hubei Collaborative Innovation Center for Rare Metal Chemistry, College of Chemistry and Chemical Engineering
来源
关键词
Lithium-ion batteries; LiNi; Co; Mn; O; coating; chromium oxides;
D O I
暂无
中图分类号
学科分类号
摘要
Cr2O3 was applied to modify the surface of LiNi1/3Co1/3Mn1/3O2 cathode material by a novel facile route. X-ray diffraction (XRD), scanning electron microscopy and x-ray photoelectron spectroscopy were used to characterize the structure, shape and composite of the obtained samples. Transmission electron microscope images clearly show that the uniform coating layer thicknesses are about 40 nm and 45 nm for 1 wt.% and 2 wt.% Cr2O3, respectively. At the high concentration (3 wt.%), the coating layer becomes heterogeneously distributed. After coating with 1 wt.%, 2 wt.%, and 3 wt.% Cr2O3, the initial specific discharge capacities decrease to 159.3 mAh g−1, 156.4 mAh g−1, and 152.7 mAh g−1 at 0.1 C, respectively. Despite an increasing charge transfer resistance for the Cr2O3 coating, a better rate capability and cycling ability have been obtained. High temperature-XRD (HT-XRD) data indicate that the thermal stability of the electrode material has also been obviously improved, which is especially helpful for LiNi1/3Co1/3Mn1/3O2 used as the cathode of lithium power batteries.
引用
收藏
页码:3681 / 3687
页数:6
相关论文
共 50 条
  • [1] Effect of Cr2O3 Coating on LiNi1/3Co1/3Mn1/3O2 as Cathode for Lithium-Ion Batteries
    Cheng, Cuixia
    Yi, Huiyang
    Chen, Fang
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (09) : 3681 - 3687
  • [2] Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries
    LI Xiaowei
    Rare Metals, 2012, 31 (02) : 140 - 144
  • [3] Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries
    Li Xiaowei
    Lin Yingbin
    Lin Ying
    Lai Heng
    Huang Zhigao
    RARE METALS, 2012, 31 (02) : 140 - 144
  • [4] Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries
    Xiaowei Li
    Yingbin Lin
    Ying Lin
    Heng Lai
    Zhigao Huang
    Rare Metals, 2012, 31 : 140 - 144
  • [5] On the Performance of LiNi1/3Mn1/3Co1/3O2 Nanoparticles as a Cathode Material for Lithium-Ion Batteries
    Sclar, Hadar
    Kovacheva, Daniela
    Zhecheva, Ekaterina
    Stoyanova, Radostina
    Lavi, Ronit
    Kimmel, Giora
    Grinblat, Judith
    Girshevitz, Olga
    Amalraj, Francis
    Haik, Ortal
    Zinigrad, Ella
    Markovsky, Boris
    Aurbach, Doron
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (11) : A938 - A948
  • [6] Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries
    Kim, Hyun-Soo
    Kong, Mingzhe
    Kim, Ketack
    Kim, Ick-Jun
    Gu, Hal-Bon
    JOURNAL OF POWER SOURCES, 2007, 171 (02) : 917 - 921
  • [7] Effect of calcination temperature on characteristics of LiNi1/3Co1/3Mn1/3O2 cathode for lithium ion batteries
    Hua-jun, Guo
    Ru-fu, Liang
    Xin-hai, Li
    Xin-ming, Zhang
    Zhi-xing, Wang
    Wen-jie, Peng
    Zhao, Wang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2007, 17 (06) : 1307 - 1311
  • [8] Electrochemically Modulated LiNi1/3Mn1/3Co1/3O2 Cathodes for Lithium-Ion Batteries
    Shuai, Honglei
    Li, Jiayang
    Hong, Wanwan
    Gao, Xu
    Zou, Guoqiang
    Hu, Jiugang
    Hou, Hongshuai
    Ji, Xiaobo
    Liu, Huiqun
    SMALL METHODS, 2019, 3 (05)
  • [9] Effect of calcination temperature on characteristics of LiNi1/3Co1/3Mn1/3O2 cathode for lithium ion batteries
    郭华军
    梁如福
    李新海
    张新明
    王志兴
    彭文杰
    王朝
    Transactions of Nonferrous Metals Society of China, 2007, (06) : 1307 - 1311
  • [10] Effects of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 cathode materials on the electrochemical performance of lithium-ion batteries
    Rui He
    Lihui Zhang
    Meifang Yan
    Yuhua Gao
    Zhenfa Liu
    Journal of Materials Science, 2017, 52 : 4599 - 4607