Repdigits base b as products of two Pell numbers or Pell–Lucas numbers

被引:0
|
作者
Fatih Erduvan
Refik Keskin
Zafer Şiar
机构
[1] Sakarya University,Department of Mathematics
[2] Bingöl University,Department of Mathematics
关键词
Pell numbers; Pell–Lucas numbers; Repdigit; Diophantine equations; linear forms in logarithms; 11B39; 11J86; 11D61;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we determine all repdigits in base b for 2≤b≤10,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le b\le 10,$$\end{document} which are products of two Pell numbers or Pell–Lucas numbers. It is shown that the largest Pell number which is a base b-repdigit is P6=70=(77)9=7+7·9.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{6}=70=(77)_{9} =7+7\cdot 9.$$\end{document} Also, we give the result that the equations PmPn+1=bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{m}P_{n}+1=b^{k}$$\end{document} and QmQn+1=bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{m}Q_{n}+1=b^{k}$$\end{document} have no solutions for n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document} and n≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1,$$\end{document} respectively, where 1≤m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Repdigits base b as products of two Pell numbers or Pell-Lucas numbers
    Erduvan, Fatih
    Keskin, Refik
    Siar, Zafer
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [2] Pell or Pell-Lucas numbers as concatenations of two repdigits in base b
    Adedji, Kouessi Norbert
    Filipin, Alan
    Rihane, Salah Eddine
    Togbe, Alain
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (01)
  • [3] Pell and Pell–Lucas Numbers as Sums of Two Repdigits
    Chèfiath Adegbindin
    Florian Luca
    Alain Togbé
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1253 - 1271
  • [4] Pell and Pell–Lucas Numbers as Product of Two Repdigits
    F. Erduvan
    R. Keskin
    Mathematical Notes, 2022, 112 : 861 - 871
  • [5] Pell and Pell–Lucas numbers as difference of two repdigits
    Bilizimbéyé Edjeou
    Bernadette Faye
    Afrika Matematika, 2023, 34
  • [6] Repdigits as Products of Consecutive Pell or Pell-Lucas Numbers
    Bravo, Eric F.
    Bravo, Jhon J.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 63 - 70
  • [7] Pell and Pell-Lucas Numbers as Sums of Two Repdigits
    Adegbindin, Chefiath
    Luca, Florian
    Togbe, Alain
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1253 - 1271
  • [8] Pell and Pell-Lucas Numbers as Product of Two Repdigits
    Erduvan, F.
    Keskin, R.
    MATHEMATICAL NOTES, 2022, 112 (5-6) : 861 - 871
  • [9] REPDIGITS AS DIFFERENCE OF TWO PELL OR PELL-LUCAS NUMBERS
    Erduvan, Fatih
    Keskin, Refik
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (01): : 63 - 73
  • [10] Pell and Pell-Lucas numbers as difference of two repdigits
    Edjeou, Bilizimbeye
    Faye, Bernadette
    AFRIKA MATEMATIKA, 2023, 34 (04)