Deep learning-derived cardiovascular age shares a genetic basis with other cardiac phenotypes

被引:0
|
作者
Julian Libiseller-Egger
Jody E. Phelan
Zachi I. Attia
Ernest Diez Benavente
Susana Campino
Paul A. Friedman
Francisco Lopez-Jimenez
David A. Leon
Taane G. Clark
机构
[1] London School of Hygiene & Tropical Medicine,Faculty of Infectious and Tropical Diseases
[2] Mayo Clinic College of Medicine,Department of Cardiovascular Medicine
[3] University Medical Center Utrecht,Laboratory of Experimental Cardiology
[4] London School of Hygiene & Tropical Medicine,Faculty of Epidemiology and Population Health
[5] UiT the Arctic University of Norway,Department of Community Medicine
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Artificial intelligence (AI)-based approaches can now use electrocardiograms (ECGs) to provide expert-level performance in detecting heart abnormalities and diagnosing disease. Additionally, patient age predicted from ECGs by AI models has shown great potential as a biomarker for cardiovascular age, where recent work has found its deviation from chronological age (“delta age”) to be associated with mortality and co-morbidities. However, despite being crucial for understanding underlying individual risk, the genetic underpinning of delta age is unknown. In this work we performed a genome-wide association study using UK Biobank data (n=34,432) and identified eight loci associated with delta age (p≤5×10-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\le 5 \times 10^{-8}$$\end{document}), including genes linked to cardiovascular disease (CVD) (e.g. SCN5A) and (heart) muscle development (e.g. TTN). Our results indicate that the genetic basis of cardiovascular ageing is predominantly determined by genes directly involved with the cardiovascular system rather than those connected to more general mechanisms of ageing. Our insights inform the epidemiology of CVD, with implications for preventative and precision medicine.
引用
收藏
相关论文
共 50 条
  • [1] Deep learning-derived cardiovascular age shares a genetic basis with other cardiac phenotypes
    Libiseller-Egger, Julian
    Phelan, Jody E. E.
    Attia, Zachi I. I.
    Benavente, Ernest Diez
    Campino, Susana
    Friedman, Paul A. A.
    Lopez-Jimenez, Francisco
    Leon, David A. A.
    Clark, Taane G. G.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Deep Learning-Derived Myocardial Strain
    Kwan, Alan C.
    Chang, Ernest W.
    Jain, Ishan
    Theurer, John
    Tang, Xiu
    Francisco, Nadia
    Haddad, Francois
    Liang, David
    Fabian, Alexandra
    Ferencz, Andrea
    Yuan, Neal
    Merkely, Bela
    Siegel, Robert
    Cheng, Susan
    Kovacs, Attila
    Tokodi, Marton
    Ouyang, David
    JACC-CARDIOVASCULAR IMAGING, 2024, 17 (07) : 715 - 725
  • [3] Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass
    Khurshid, Shaan
    Lazarte, Julieta
    Pirruccello, James P.
    Weng, Lu-Chen
    Choi, Seung Hoan
    Hall, Amelia W.
    Wang, Xin
    Friedman, Samuel F.
    Nauffal, Victor
    Biddinger, Kiran J.
    Aragam, Krishna G.
    Batra, Puneet
    Ho, Jennifer E.
    Philippakis, Anthony A.
    Ellinor, Patrick T.
    Lubitz, Steven A.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass
    Shaan Khurshid
    Julieta Lazarte
    James P. Pirruccello
    Lu-Chen Weng
    Seung Hoan Choi
    Amelia W. Hall
    Xin Wang
    Samuel F. Friedman
    Victor Nauffal
    Kiran J. Biddinger
    Krishna G. Aragam
    Puneet Batra
    Jennifer E. Ho
    Anthony A. Philippakis
    Patrick T. Ellinor
    Steven A. Lubitz
    Nature Communications, 14
  • [5] Inferring the genetic relationships between unsupervised deep learning-derived imaging phenotypes and glioblastoma through multi-omics approaches
    Ye, Liguo
    Ye, Cheng
    Li, Pengtao
    Wang, Yu
    Ma, Wenbin
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [6] Machine learning-derived echocardiographic phenotypes predict outcome in tricuspid annuloplasty
    Tse, Y. K.
    Li, H. L.
    Ren, Q. W.
    Wu, M. Z.
    Yiu, K. H.
    EUROPEAN JOURNAL OF HEART FAILURE, 2022, 24 : 218 - 218
  • [7] Deep learning-derived optimal aviation strategies to control pandemics
    Rizvi, Syed
    Awasthi, Akash
    Pelaez, Maria J.
    Wang, Zhihui
    Cristini, Vittorio
    Nguyen, Hien Van
    Dogra, Prashant
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Prognostic implications of machine learning-derived echocardiographic phenotypes in community hypertensive patients
    Cai, Anping
    Dan, Zhou
    Zhou, Yingling
    Feng, Yinqing
    Nie, Zhiqiang
    CLINICAL AND EXPERIMENTAL HYPERTENSION, 2023, 45 (01)
  • [9] A machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
    Schrutka, L.
    Anner, P.
    Agibetov, A.
    Seirer, B.
    Rettl, R.
    Duca, F.
    Dalos, D.
    Dachs, T.
    Binder, C.
    Badr-Eslam, R.
    Kastner, J.
    Beitzke, D.
    Loewe, C.
    Hengstenberg, C.
    Laufer, G.
    Stix, G.
    Dorffner, G.
    Bonderman, D.
    WIENER KLINISCHE WOCHENSCHRIFT, 2021, 133 (SUPPL 3) : S103 - S104
  • [10] A machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
    Schrutka, L. Lore
    Anner, P.
    Seirer, B.
    Rettl, R.
    Duca, F.
    Dalos, D.
    Dachs, T. M.
    Binder, C.
    Badr-Eslam, R.
    Kastner, J.
    Hengstenberg, C.
    Laufer, G.
    Stix, G.
    Dorffner, G.
    Bonderman, D.
    EUROPEAN JOURNAL OF HEART FAILURE, 2021, 23 : 94 - 94