A Functionally-Fitted Block Numerov Method for Solving Second-Order Initial-Value Problems with Oscillatory Solutions

被引:0
|
作者
R. I. Abdulganiy
Higinio Ramos
O. A. Akinfenwa
S. A. Okunuga
机构
[1] University of Lagos,Distance Learning Institute
[2] University of Salamanca,Department of Applied Mathematics
[3] University of Lagos,Department of Expunge Applied Mathematics
来源
关键词
Block method; convergence analysis; functionally-fitted approach; numerov-type method; trigonometric functions; hyperbolic functions; Primary 65L05; Secondary 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
A functionally-fitted Numerov-type method is developed for the numerical solution of second-order initial-value problems with oscillatory solutions. The basis functions are considered among trigonometric and hyperbolic ones. The characteristics of the method are studied, particularly, it is shown that it has a third order of convergence for the general second-order ordinary differential equation, y′′=fx,y,y′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y''=f \left( x,y,y' \right) $$\end{document}, it is a fourth order convergent method for the special second-order ordinary differential equation, y′′=fx,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y''=f \left( x,y\right) $$\end{document}. Comparison with other methods in the literature, even of higher order, shows the good performance of the proposed method.
引用
收藏
相关论文
共 50 条