Vertical Toeplitz Operators on the Upper Half-Plane and Very Slowly Oscillating Functions

被引:0
|
作者
Crispin Herrera Yañez
Egor A. Maximenko
Nikolai Vasilevski
机构
[1] CINVESTAV,Departamento de Matemáticas
[2] Instituto Politécnico Nacional,Escuela Superior de Física y Matemáticas
来源
关键词
Primary 47B35; Secondary 47B32; 32A36; 44A10; 44A15; Bergman space; Toeplitz operators; invariant under horizontal shifts; Laplace transform; very slowly oscillating functions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the C*-algebra generated by Toeplitz operators acting on the Bergman space over the upper half-plane whose symbols depend on the imaginary part of the argument only. Such algebra is known to be commutative, and is isometrically isomorphic to an algebra of bounded complex-valued functions on the positive half-line. In the paper we prove that the latter algebra consists of all bounded functions f that are very slowly oscillating in the sense that the composition of f with the exponential function is uniformly continuous or, in other words, limxy→1f(x)-f(y)=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim_{\frac{x}{y} \to 1} \left|f(x) - f(y)\right| = 0.$$\end{document}
引用
收藏
页码:149 / 166
页数:17
相关论文
共 50 条