An experimental and numerical study on heat transfer enhancement of a heat sink fin by synthetic jet impingement

被引:0
|
作者
Longzhong Huang
Taiho Yeom
Terrence Simon
Tianhong Cui
机构
[1] University of Minnesota,Department of Mechanical Engineering
[2] University of Mississippi,Department of Mechanical Engineering
来源
Heat and Mass Transfer | 2021年 / 57卷
关键词
Synthetic jet; Forced convection; Electronics cooling; Heat transfer enhancement;
D O I
暂无
中图分类号
学科分类号
摘要
Compared to traditional continuous jets, synthetic jets (jets with oscillatory flow such that the time-average velocity is zero) have specific advantages, such as lower power requirement, simpler structure and the ability to produce an unsteady turbulent flow that is known to be effective in augmenting heat transfer. This study presents experimental and computational results that document heat transfer coefficients associated with impinging a synthetic jet flow onto the tip region of a longitudinal fin used in an electronics cooling system. The effects of different parameters, such as amplitude and frequency of diaphragm movement and jet-to-cooled-surface spacing, are recorded. The computational results show a good match with experimental results. In the experiments, an actual-scale (1 mm jet orifice) system is introduced and, for finer spatial resolution and improved control over geometric and operational conditions, a large-scale mock-up (44 mm jet orifice) is applied in a dynamically-similar way, then tested. Results of the experiments at the two scales, combined with the computational results, describe fin heat transfer coefficients on and near the jet impingement stagnation point. A linear relationship for heat transfer coefficient versus frequency of diaphragm movement is shown. Heat transfer coefficient values as high as 650 W/m2K are obtained with high-frequency diaphragm movement. Cases with different orifice shapes show how jet impingement cooling performance changes with orifice shape.
引用
收藏
页码:583 / 593
页数:10
相关论文
共 50 条
  • [1] An experimental and numerical study on heat transfer enhancement of a heat sink fin by synthetic jet impingement
    Huang, Longzhong
    Yeom, Taiho
    Simon, Terrence
    Cui, Tianhong
    HEAT AND MASS TRANSFER, 2021, 57 (04) : 583 - 593
  • [2] Numerical study of liquid jet impingement flow and heat transfer of a cone heat sink
    Tang, Zhiguo
    Li, Hai
    Zhang, Feng
    Min, Xiaoteng
    Cheng, Jianping
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (11) : 4074 - 4092
  • [3] Synthetic jet impingement heat transfer enhancement - A review
    Krishan, Gopal
    Aw, Kean C.
    Sharma, Rajnish N.
    APPLIED THERMAL ENGINEERING, 2019, 149 : 1305 - 1323
  • [4] PIEZOELECTRIC SYNTHETIC JET INTEGRATED WITH HEAT SINK FOR HEAT TRANSFER ENHANCEMENT
    Li, Qiao
    Huang, Longzhong
    Zhang, Min
    North, Mark T.
    Simon, Terrence
    Cui, Tianhong
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 8B, 2014,
  • [5] Experimental and Numerical Investigations of Impingement Air Jet for a Heat Sink
    Yakut, Ridvan
    Yakut, Kenan
    Yesildal, Faruk
    Karabey, Altug
    SELECTED PAPERS FROM IX INTERNATIONAL CONFERENCE ON COMPUTATIONAL HEAT AND MASS TRANSFER (ICCHMT2016), 2016, 157 : 3 - 12
  • [6] Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink
    Naphon, Paisarn
    Nakharintr, Lursukd
    Journal of Engineering Physics and Thermophysics, 2012, 85 (06) : 1432 - 1440
  • [7] A Numerical Study on Heat Transfer Enhancement in a Mist/Air Impingement Jet
    Shokouhmand, H.
    Heyhat, M. M.
    JOURNAL OF ENHANCED HEAT TRANSFER, 2010, 17 (03) : 231 - 242
  • [8] Enhancement of heat transfer in heat sink under the effect of a magnetic field and an impingement jet
    Azadi, Shervin
    Abjadi, Ali
    Azad, Abazar
    Ashtiani, Hossein Ahmadi Danesh
    Afshar, Hossein
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2023, 9
  • [9] Experimental and Numerical Simulation of the Heat Transfer Enhancement on the Twin Impingement Jet Mechanism
    Abdullah, Mahir Faris
    Zulkifli, Rozli
    Harun, Zambri
    Abdullah, Shahrir
    Ghopa, Wan Aizon Wan
    ENERGIES, 2018, 11 (04)
  • [10] Experimental optimization of confined air jet impingement on a pin fin heat sink
    Brignoni, LA
    Garimella, SV
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 1999, 22 (03): : 399 - 404