Cryptographic Hardness of Random Local FunctionsSurvey

被引:0
|
作者
Benny Applebaum
机构
[1] Tel-Aviv University,School of Electrical Engineering
来源
computational complexity | 2016年 / 25卷
关键词
94A60; 68Q17; 68P25; constant-depth circuits; cryptography; hash functions; local functions; NC0; one-way functions; pseudorandom generators; public-key encryption;
D O I
暂无
中图分类号
学科分类号
摘要
Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate level of parallelism, namely by local functions that each of their output bits depend on a constant number of input bits. A natural way to obtain local cryptographic constructions is to use random local functions in which each output bit is computed by applying some fixed d-ary predicate P to a randomly chosen d-size subset of the input bits.
引用
收藏
页码:667 / 722
页数:55
相关论文
共 50 条
  • [1] Cryptographic Hardness of Random Local Functions
    Applebaum, Benny
    COMPUTATIONAL COMPLEXITY, 2016, 25 (03) : 667 - 722
  • [2] Cryptographic Hardness of Random Local Functions - Survey
    Applebaum, Benny
    THEORY OF CRYPTOGRAPHY (TCC 2013), 2013, 7785 : 599 - 599
  • [3] Hardness of Continuous Local Search: Query Complexity and Cryptographic Lower Bounds
    Hubacek, Pavel
    Yogev, Eylon
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1352 - 1371
  • [4] HARDNESS OF CONTINUOUS LOCAL SEARCH: QUERY COMPLEXITY AND CRYPTOGRAPHIC LOWER BOUNDS
    Hubacek, Pavel
    Yogev, Eylon
    SIAM JOURNAL ON COMPUTING, 2020, 49 (06) : 1128 - 1172
  • [5] Permuted Puzzles and Cryptographic Hardness
    Boyle, Elette
    Holmgren, Justin
    Weiss, Mor
    THEORY OF CRYPTOGRAPHY, TCC 2019, PT II, 2019, 11892 : 465 - 493
  • [6] Cryptographic hardness for learning intersections of halfspaces
    Klivans, Adam R.
    Sherstov, Alexander A.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2009, 75 (01) : 2 - 12
  • [7] Cryptographic hardness for learning intersections of halfspaces
    Klivans, Adam R.
    Sherstov, Alexander A.
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 553 - +
  • [8] On the Cryptographic Hardness of Finding a Nash Equilibrium
    Bitansky, Nir
    Paneth, Omer
    Rosen, Alon
    2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, : 1480 - 1498
  • [9] Optimal Cryptographic Hardness of Learning Monotone Functions
    Dachman-Soled, Dana
    Lee, Homin K.
    Malkin, Tal
    Servedio, Rocco A.
    Wan, Andrew
    Wee, Hoeteck
    Theory of Computing, 2009, 5 : 257 - 282
  • [10] On the Cryptographic Hardness of Learning Single Periodic Neurons
    Song, Min Jae
    Zadik, Ilias
    Bruna, Joan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34