D’Alembert’s Matrix Functional Equation with an Endomorphism on Abelian Groups

被引:0
|
作者
Y. Aissi
D. Zeglami
机构
[1] Moulay ISMAÏL University,Department of Mathematics, E.N.S.A.M
来源
Results in Mathematics | 2020年 / 75卷
关键词
Matrix functional equation; d’Alembert; character; quadratic equation; homomorphism; additive function; linear algebra; Primary 39B32; 39B42; 39B72;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be an abelian group, let M2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}(\mathbb {C})$$\end{document} be the algebra of complex 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} matrices, and let φ:G→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi :G\rightarrow G$$\end{document} be an endomorphism that need not be involutive. We determine the solutions Φ:G→M2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi :G\rightarrow M_{2}(\mathbb {C})$$\end{document} of the matrix functional equation Φ(x+y)+Φ(x+φ(y))2=Φ(x)Φ(y),x,y∈G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\Phi (x+y)+\Phi (x+\varphi (y))}{2}=\Phi (x)\Phi (y),\quad x,y\in G. \end{aligned}$$\end{document}This enables us to characterize the solutions g:G→C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:G\rightarrow \mathbb {C}^{2}$$\end{document} and Φ:G→M2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi :G\rightarrow M_{2}(\mathbb {C})$$\end{document} of the following functional equation g(x+y)+g(x+φ(y))=2Φ(y)g(x),x,y∈G,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x+y)+g(x+\varphi (y))=2\Phi (y)g(x),\quad x,y\in G, \end{aligned}$$\end{document}under the invariant condition Φ∘φ=Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \circ \varphi =\Phi $$\end{document}.
引用
收藏
相关论文
共 50 条