Extrapolation of Creep Rupture Strength Diagrams for Heat-Resistant Materials

被引:0
|
作者
M. K. Kucher
D. S. Avramenko
机构
[1] Pisarenko Institute of Problems of Strength,
[2] National Academy of Sciences of Ukraine,undefined
来源
Strength of Materials | 2022年 / 54卷
关键词
extrapolation; interpolation; parametric methods; creep rupture strength diagrams of materials; modified method of base diagrams elevated temperatures;
D O I
暂无
中图分类号
学科分类号
摘要
The efficiency of known approaches to predicting the creep rupture strength diagrams of heat-resistant materials at elevated temperatures is analyzed. Extrapolation results for long deformation terms with known Larson–Miller, Orr–Sherby–Dorn, Trunin, Manson–Haferd parametric methods, and the modified base diagram method are presented. Creep rupture strength characteristics were calculated on the basis of existing experimental life curves for heat-resistant materials. The reliability of calculations is corroborated by comparing with known experiments for 18Cr-12Ni-Mo and 1.25Cr-0.5Mo-Si steels. The advantages of the modified base diagram method for creep rupture strength prediction on large deformation databases are demonstrated. Mathematical models for extrapolation of creep rupture strength diagrams are examined in view of a limited number of experimental data and the nonfulfilment of the hypothesis of a single curve.
引用
收藏
页码:592 / 596
页数:4
相关论文
共 50 条
  • [1] Extrapolation of Creep Rupture Strength Diagrams for Heat-Resistant Materials
    Kucher, M. K.
    Avramenko, D. S.
    STRENGTH OF MATERIALS, 2022, 54 (04) : 592 - 596
  • [2] Reliability of Time-Temperature Extrapolation of Creep Rupture Diagrams for Heat-Resistant Steels
    M. K. Kucher
    R. P. Prikhod’ko
    Strength of Materials, 2015, 47 : 697 - 704
  • [3] RELIABILITY OF TIME-TEMPERATURE EXTRAPOLATION OF CREEP RUPTURE DIAGRAMS FOR HEAT-RESISTANT STEELS
    Kucher, M. K.
    Prikhod'ko, R. P.
    STRENGTH OF MATERIALS, 2015, 47 (05) : 697 - 704
  • [4] CREEP-RUPTURE BEHAVIOR OF HEAT-RESISTANT MATERIALS FOR PETROCHEMICAL INDUSTRY
    GRANACHER, J
    ARCHIV FUR DAS EISENHUTTENWESEN, 1976, 47 (12): : 745 - 750
  • [5] Studies on the chemical composition–creep-rupture strength relation for heat-resistant nickel alloys
    V. V. Krivenyuk
    R. I. Kuriat
    G. V. Mukhopad
    S. G. Kiselevskaya
    Strength of Materials, 2011, 43 : 168 - 177
  • [6] STUDIES ON THE CHEMICAL COMPOSITION-CREEP-RUPTURE STRENGTH RELATION FOR HEAT-RESISTANT NICKEL ALLOYS
    Krivenyuk, V. V.
    Kuriat, R. I.
    Mukhopad, G. V.
    Kiselevskaya, S. G.
    STRENGTH OF MATERIALS, 2011, 43 (02) : 168 - 177
  • [7] Identification of the parameters of steady creep of heat-resistant materials
    Golub, V.P.
    Sinaiskii, B.N.
    Yashchuk, N.V.
    Strength of materials, 1991, 22 (05) : 645 - 651
  • [8] INFLUENCE OF SCALING ON CREEP-RUPTURE BEHAVIOR OF HEAT-RESISTANT STEEL
    KLOOS, KH
    GRANACHER, J
    HOLDINGHAUSEN, A
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 1993, 24 (12) : 440 - 445
  • [9] Influence of creep strength of weld on interfacial creep damage of welded joint of martensitic heat-resistant steel and bainitic heat-resistant steel
    College of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
    Hanjie Xuebao, 2008, 3 (101-104):
  • [10] Evaluation of creep rupture strength of high nitrogen ferritic heat-resistant steels using small punch creep testing technique
    Naveena
    Komazaki, Shin-ichi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 676 : 100 - 108