Geometric error compensation for five-axis ball-end milling by considering machined surface textures

被引:0
|
作者
Guoqiang Fu
Tengda Gu
Hongli Gao
Yu’an Jin
Xiaolei Deng
机构
[1] Southwest Jiaotong University,Department of Electromechanical Measuring and Controlling, School of Mechanical Engineering
[2] Zhejiang University,State Key Laboratory of Fluid Power and Mechatronic Systems
[3] Zhejiang University,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering
[4] Ningbo University,School of Mechanical Engineering and Mechanics
[5] Quzhou University,College of Mechanical Engineering
关键词
Geometric error compensation; Five-axis machine tools; Ball-end milling; Cutter contact points; Tool center limitation;
D O I
暂无
中图分类号
学科分类号
摘要
Arbitrarily adjusting tool poses during error compensation may affect the quality of surface textures. This paper presents one tool center limitation-based geometric error compensation for five-axis ball-end milling to avoid the unexpected machined textures. Firstly, the mechanism of cutter location generation with cuter contact (CC) trajectory is analyzed. Due to zero bottom radius of ball-end cutter, CC points of the surface are only related to the tool center of the cutter. Realizing that, tool center limitation method of ball-end milling is established based on the generation of movements of all axes in order to ensure the machined textures. Then, geometric error compensation of ball-end milling is expressed as optimizing rotation angles of rotary axes by limiting tool centers of cutter locations. Next, particle swarm optimization (PSO) is intergraded into the geometric error compensation to obtain the compensated numerical control (NC) code. The limited region for particles of rotation angles is established, and moving criterion with a mutation operation is presented. With the help of the tool center limitation method, fitnesses of all particles are calculated with the integrated geometric error model. In this way, surface textures are considered and geometric errors of the machine tool are reduced. At last, cutting experiments on five-axis ball-end milling are carried out to testify the effectiveness of the proposed geometric error compensation.
引用
收藏
页码:1235 / 1248
页数:13
相关论文
共 50 条
  • [1] Geometric error compensation for five-axis ball-end milling by considering machined surface textures
    Fu, Guoqiang
    Gu, Tengda
    Gao, Hongli
    Jin, Yu'an
    Deng, Xiaolei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (5-8): : 1235 - 1248
  • [2] Tool deflection error compensation in five-axis ball-end milling of sculptured surface
    Ma, Wenkui
    He, Gaiyun
    Zhu, Limin
    Guo, Longzhen
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 84 (5-8): : 1421 - 1430
  • [3] Tool deflection error compensation in five-axis ball-end milling of sculptured surface
    Wenkui Ma
    Gaiyun He
    Limin Zhu
    Longzhen Guo
    The International Journal of Advanced Manufacturing Technology, 2016, 84 : 1421 - 1430
  • [4] Geometric error compensation of five-axis ball-end milling based on tool orientation optimization and tool path smoothing
    Guoqiang Fu
    Jing Liu
    Yongjian Rao
    Hongli Gao
    Caijiang Lu
    Xiaolei Deng
    The International Journal of Advanced Manufacturing Technology, 2020, 108 : 1737 - 1749
  • [5] Geometric error compensation of five-axis ball-end milling based on tool orientation optimization and tool path smoothing
    Fu, Guoqiang
    Liu, Jing
    Rao, Yongjian
    Gao, Hongli
    Lu, Caijiang
    Deng, Xiaolei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (5-6): : 1737 - 1749
  • [6] Dynamics and Stability of Five-Axis Ball-End Milling
    Ozturk, Erdem
    Budak, Erhan
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 0210031 - 02100313
  • [7] Study on surface defects in five-axis ball-end milling of tool steel
    P. Wang
    S. Zhang
    Z. G. Yan
    The International Journal of Advanced Manufacturing Technology, 2017, 89 : 599 - 609
  • [8] Geometry simulation and evaluation of the surface topography in five-axis ball-end milling
    Li Bo
    Cao Yanlong
    Chen Wenhua
    Pan Jun
    The International Journal of Advanced Manufacturing Technology, 2017, 93 : 1651 - 1667
  • [9] Geometry simulation and evaluation of the surface topography in five-axis ball-end milling
    Li Bo
    Cao Yanlong
    Chen Wenhua
    Pan Jun
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 93 (5-8): : 1651 - 1667
  • [10] Study on surface defects in five-axis ball-end milling of tool steel
    Wang, P.
    Zhang, S.
    Yan, Z. G.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 89 (1-4): : 599 - 609