A numerical algorithm for computing tsunami wave amplitudes

被引:4
|
作者
Kabanikhin S.I. [1 ,2 ]
Krivorot’ko O.I. [1 ,2 ]
机构
[1] Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk
[2] Novosibirsk State University, ul. Pirogova 2, Novosibirsk
关键词
eikonal equation; finite difference approach; fundamental solution; shallow water equations; tsunami amplitude;
D O I
10.1134/S1995423916020038
中图分类号
学科分类号
摘要
A numerical multistep algorithm for computing tsunami wave front amplitudes is proposed. The first step consists in solving an appropriate eikonal equation. The eikonal equation is solved with Godunov’s approach and a bicharacteristic method. A qualitative comparison of the two methods is done. A change of variables is made with the eikonal equation solution at the second step. At the last step, using an expansion of the fundamental solution to the shallow water equations in the new variables, we obtain a Cauchy problem of lesser dimension for the leading edge wave amplitude. The results of numerical experiments are presented. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:118 / 128
页数:10
相关论文
共 50 条
  • [1] An algorithm for computing wavefront amplitudes and inverse problems (tsunami, electrodynamics, acoustics, and viscoelasticity)
    Kabanikhin, S. I.
    Krivorotko, O. I.
    DOKLADY MATHEMATICS, 2016, 93 (01) : 103 - 107
  • [2] An algorithm for computing wavefront amplitudes and inverse problems (tsunami, electrodynamics, acoustics, and viscoelasticity)
    S. I. Kabanikhin
    O. I. Krivorotko
    Doklady Mathematics, 2016, 93 : 103 - 107
  • [3] Forecasting Wave Amplitudes after the Arrival of a Tsunami
    Nyland, David
    Huang, Paul
    PURE AND APPLIED GEOPHYSICS, 2014, 171 (12) : 3501 - 3513
  • [4] Forecasting Wave Amplitudes after the Arrival of a Tsunami
    David Nyland
    Paul Huang
    Pure and Applied Geophysics, 2014, 171 : 3501 - 3513
  • [5] ON THE NUMERICAL MODELING OF TSUNAMI WAVE GENERATION AND PROPAGATION
    SELEZOV, IT
    ZHELEZNYAK, MI
    TKACHENKO, VA
    YAKOVLEV, VV
    MARINE GEODESY, 1983, 6 (02) : 149 - 165
  • [6] An algorithm for computing the numerical radius
    He, CY
    Watson, GA
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) : 329 - 342
  • [7] Numerical Simulation of Tsunami Wave Propagation to the Balaklava Bay
    Fomin, V. V.
    Belokon, A. Yu
    Kharitonova, L., V
    Alekseev, D., V
    PHYSICAL OCEANOGRAPHY, 2022, 29 (04): : 379 - 394
  • [8] Towards a quantum computing algorithm for helicity amplitudes and parton showers
    Bepari, Khadeejah
    Malik, Sarah
    Spannowsky, Michael
    Williams, Simon
    PHYSICAL REVIEW D, 2021, 103 (07)
  • [9] FAST ALGORITHM FOR CALCULATION OF THE MOVING TSUNAMI WAVE HEIGHT
    Krivorotko, O. I.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : C115 - C120
  • [10] Parallel Implementation of Dispersive Tsunami Wave Modeling with a Nesting Algorithm for the 2011 Tohoku Tsunami
    Toshitaka Baba
    Narumi Takahashi
    Yoshiyuki Kaneda
    Kazuto Ando
    Daisuke Matsuoka
    Toshihiro Kato
    Pure and Applied Geophysics, 2015, 172 : 3455 - 3472