The almost-periodic solutions of the weakly coupled pendulum equations

被引:0
|
作者
Hepeng Li
机构
[1] Fudan University,School of Mathematical Sciences
[2] Sichuan University of Arts and Science,Department of Mathematics
来源
Advances in Difference Equations | / 2018卷
关键词
Coupled pendulum equations; Normally hyperbolic invariant tori; Almost-periodic solutions; KAM theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is proved that, for the networks of weakly coupled pendulum equations d2xndt2+λn2sinxn=ϵWn(xn−1,xn,xn−1),n∈Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{d^{2} x_{n}}{d t^{2}}+\lambda_{n}^{2} \sin x_{n}= \epsilon W_{n}(x_{n-1},x_{n},x_{n-1}),\quad n \in\mathbb {Z}, $$\end{document} there are many (positive Lebesgue measure) normally hyperbolic invariant tori which are infinite dimensional in both tangent and normal directions.
引用
收藏
相关论文
共 50 条