Bieliavsky introduced and investigated a class of symplectic symmetric spaces, that is, symmetric spaces endowed with a symplectic structure invariant with respect to symmetries. The theory of symmetric spaces has essential and interesting generalizations due to the fundamental work of Gray and Wolf continued by many researchers. Therefore, we ask a question about possible symplectic versions of such theory. In this paper we do obtain such generalization, and, in particular, give a list of all symplectic 3-symmetric manifolds with simple groups of transvections. We also show a method of constructing semisimple (noncompact) symplectic k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document}-symmetric spaces from a given (compact) Kähler k-symmetric space.