A lightweight small object detection algorithm based on improved YOLOv5 for driving scenarios

被引:0
|
作者
Zonghui Wen
Jia Su
Yongxiang Zhang
Mingyu Li
Guoxi Gan
Shenmeng Zhang
Deyu Fan
机构
[1] Capital Normal University,Information Engineering College
[2] Nanyang Technological University,undefined
[3] Qingdao University of Science and Technology,undefined
关键词
Small object detection; Autonomous driving; LSD-YOLO; YOLOv5;
D O I
暂无
中图分类号
学科分类号
摘要
Small object detection has been a longstanding challenge in the field of object detection, and achieving high detection accuracy is crucial for autonomous driving, especially for small objects. This article focuses on researching small object detection algorithms in driving scenarios. To address the need for higher accuracy and fewer parameters in object detection for autonomous driving, we propose LSD-YOLO, a small object detection algorithm with higher average precision and fewer parameters. Building upon YOLOv5, we fully leverage small-scale feature maps to enhance the network’s detection ability for small objects. Additionally, we introduce a new structure called FasterC3 to reduce the network’s latency and parameter volume. To locate attention regions in complex driving scenarios, we integrate Coordinate Attention and explore multiple solutions to determine the optimal approach. Furthermore, we use a spatial pyramid pooling method called LeakySPPF (Wen and Zhang, in: Jin Z, Jiang Y, Buchmann RA, Bi Y, Ghiran A-M, Ma W (eds.) Knowledge Science, Engineering and Management, pp. 39-46. Springer, Cham, 2023) to further improve network speed, achieving up to 15% faster computation. Finally, to better match driving scenarios, we propose a medium-sized dataset called Cone4k to supplement insufficient categories in the VisDrone dataset. Extensive experiments show that our proposed LSD-YOLO(s) achieves an mAP and F1 score of 24.9 and 48.6, respectively, on the VisDrone2021 dataset, resulting in a 4.6% and 3.6% improvement over YOLOv5(s) while reducing parameter volume by 7.5%.
引用
收藏
相关论文
共 50 条
  • [1] A lightweight small object detection algorithm based on improved YOLOv5 for driving scenarios
    Wen, Zonghui
    Su, Jia
    Zhang, Yongxiang
    Li, Mingyu
    Gan, Guoxi
    Zhang, Shenmeng
    Fan, Deyu
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [2] An improved lightweight object detection algorithm for YOLOv5
    Luo, Hao
    Wei, Jiangshu
    Wang, Yuchao
    Chen, Jinrong
    Li, Wujie
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [3] Improved Small Object Detection Algorithm Based on YOLOv5
    Xu, Bo
    Gao, Bin
    Li, Yunhu
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (05) : 57 - 65
  • [4] A Small Object Detection Algorithm Based on Improved YOLOv5
    Guo L.
    Wang Q.
    Xue W.
    Guo J.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2022, 51 (02): : 251 - 258
  • [5] Lightweight object detection algorithm for robots with improved YOLOv5
    Liu, Gang
    Hu, Yanxin
    Chen, Zhiyu
    Guo, Jianwei
    Ni, Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [6] Improved YOLOv5 for Small Object Detection Algorithm
    Yu, Jun
    Jia, Yinshan
    Computer Engineering and Applications, 2023, 59 (12) : 201 - 207
  • [7] Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Image
    Xie, Chunhui
    Wu, Jinming
    Xu, Huaiyu
    Computer Engineering and Applications, 2023, 59 (09) : 198 - 206
  • [8] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [9] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [10] Small Object Detection Method based on Improved YOLOv5
    Gao, Tianyu
    Wushouer, Mairidan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 144 - 149