Weighted Symbolic Dependence Metric (wSDM) for fMRI resting-state connectivity: A multicentric validation for frontotemporal dementia

被引:0
|
作者
Sebastian Moguilner
Adolfo M. García
Ezequiel Mikulan
Eugenia Hesse
Indira García-Cordero
Margherita Melloni
Sabrina Cervetto
Cecilia Serrano
Eduar Herrera
Pablo Reyes
Diana Matallana
Facundo Manes
Agustín Ibáñez
Lucas Sedeño
机构
[1] Favaloro University,Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation
[2] Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA),Instituto Balseiro and Facultad de Ciencias Exactas y Naturales
[3] Universidad Nacional de Cuyo (UNCuyo),Departamento de Educación Física y Salud, Instituto Superior de Educación Física
[4] National Scientific and Technical Research Council (CONICET),Universidad Icesi
[5] Faculty of Education,Intellectus Memory and Cognition Center, Aging Institute, Mental Health and Psychiatry Department, Hospital Universitario San Ignacio
[6] National University of Cuyo (UNCuyo),undefined
[7] Universidad de la República,undefined
[8] Neurologia Cognitiva. Hospital Cesar Milstein.,undefined
[9] Departamento de Estudios Psicologicos,undefined
[10] Pontificia Universidad Javeriana,undefined
[11] Centre of Excellence in Cognition and its Disorders,undefined
[12] Australian Research Council (ARC),undefined
[13] Center for Social and Cognitive Neuroscience (CSCN),undefined
[14] School of Psychology,undefined
[15] Universidad Adolfo Ibáñez,undefined
[16] Diagonal Las Torres,undefined
[17] Universidad Autónoma del Caribe,undefined
[18] Instituto de Ingeniería Biomédica,undefined
[19] Facultad de Ingeniería,undefined
[20] Universidad de Buenos Aires,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The search for biomarkers of neurodegenerative diseases via fMRI functional connectivity (FC) research has yielded inconsistent results. Yet, most FC studies are blind to non-linear brain dynamics. To circumvent this limitation, we developed a “weighted Symbolic Dependence Metric” (wSDM) measure. Using symbolic transforms, we factor in local and global temporal features of the BOLD signal to weigh a robust copula-based dependence measure by symbolic similarity, capturing both linear and non-linear associations. We compared this measure with a linear connectivity metric (Pearson’s R) in its capacity to identify patients with behavioral variant frontotemporal dementia (bvFTD) and controls based on resting-state data. We recruited participants from two international centers with different MRI recordings to assess the consistency of our measure across heterogeneous conditions. First, a seed-analysis comparison of the salience network (a specific target of bvFTD) and the default-mode network (as a complementary control) between patients and controls showed that wSDM yields better identification of resting-state networks. Moreover, machine learning analysis revealed that wSDM yielded higher classification accuracy. These results were consistent across centers, highlighting their robustness despite heterogeneous conditions. Our findings underscore the potential of wSDM to assess fMRI-derived FC data, and to identify sensitive biomarkers in bvFTD.
引用
收藏
相关论文
共 50 条
  • [1] Weighted Symbolic Dependence Metric (wSDM) for fMRI resting-state connectivity: A multicentric validation for frontotemporal dementia
    Moguilner, Sebastian
    Garcia, Adolfo M.
    Mikulan, Ezequiel
    Hesse, Eugenia
    Garcia-Cordero, Indira
    Melloni, Margherita
    Cervetto, Sabrina
    Serrano, Cecilia
    Herrera, Eduar
    Reyes, Pablo
    Matallana, Diana
    Manes, Facundo
    Ibanez, Agustin
    Sedeno, Lucas
    SCIENTIFIC REPORTS, 2018, 8
  • [2] State-Dependent Effective Connectivity in Resting-State fMRI
    Park, Hae-Jeong
    Eo, Jinseok
    Pae, Chongwon
    Son, Junho
    Park, Sung Min
    Kang, Jiyoung
    FRONTIERS IN NEURAL CIRCUITS, 2021, 15
  • [3] RESTING-STATE FMRI BRAIN CONNECTIVITY IN HAND OSTEOARTHRITIS
    Russell, M. D.
    Howe, F. A.
    Barrick, T. R.
    Sofat, N.
    ANNALS OF THE RHEUMATIC DISEASES, 2018, 77 : 1139 - 1139
  • [4] Arousal Contributions to Resting-State fMRI Connectivity and Dynamics
    Gu, Yameng
    Han, Feng
    Liu, Xiao
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [5] DELETERIOUS RESTING-STATE CONNECTIVITY IN STIMULANT DEPENDENCE
    MacDonald, Angus, III
    Camchong, Jazmin
    Patzelt, Edward
    Wisner, Krista
    Specker, Sheila
    Lim, Kelvin O.
    PSYCHOPHYSIOLOGY, 2012, 49 : S4 - S4
  • [6] Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach
    Xu, Nan
    Spreng, R. Nathan
    Doerschuk, Peter C.
    FRONTIERS IN NEUROSCIENCE, 2017, 11 : 1 - 14
  • [7] Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study
    Zhu, Yuanqiang
    Feng, Zhiyan
    Xu, Junling
    Fu, Chang
    Sun, Jinbo
    Yang, Xuejuan
    Shi, Dapeng
    Qin, Wei
    BRAIN IMAGING AND BEHAVIOR, 2016, 10 (03) : 911 - 919
  • [8] Increased interhemispheric resting-state functional connectivity in paroxysmal kinesigenic dyskinesia: A resting-state fMRI study
    Ren, Jiechuan
    Lei, Du
    Yang, Tianhua
    An, Dongmei
    Xiao, Fenglai
    Li, Lei
    Huang, Xiaoqi
    Gong, Qiyong
    Zhou, Dong
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2015, 351 (1-2) : 93 - 98
  • [9] Variant-specific vulnerability in metabolic connectivity and resting-state networks in behavioural variant of frontotemporal dementia
    Malpetti, Maura
    Carli, Giulia
    Sala, Arianna
    Cerami, Chiara
    Marcone, Alessandra
    Iannaccone, Sandro
    Magnani, Giuseppe
    Perani, Daniela
    CORTEX, 2019, 120 : 483 - 497
  • [10] Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study
    Yuanqiang Zhu
    Zhiyan Feng
    Junling Xu
    Chang Fu
    Jinbo Sun
    Xuejuan Yang
    Dapeng Shi
    Wei Qin
    Brain Imaging and Behavior, 2016, 10 : 911 - 919