On the Relative Distances of Nine Points in the Boundary of a Plane Convex Body

被引:0
|
作者
Cen Liu
Zhanjun Su
机构
[1] Hebei Normal University,School of Mathematical Sciences
来源
Results in Mathematics | 2021年 / 76卷
关键词
Relative distance; plane convex body; homothetical copy; 52A10; 52A40; 52C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a plane convex body. The relative distance (or C-distance) of points a,b∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b\in C$$\end{document} is defined by the ratio of the Euclidean distance of a and b to the half of the Euclidean distance of a1,b1∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{1}, b_{1}\in C$$\end{document}, where a1b1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{1}b_{1}$$\end{document} is a longest chord of C parallel to the line-segment ab. Denote by ϕk(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{k}(C)$$\end{document} the greatest possible number d such that the boundary of C contains k points in pairwise C-distance at least d and denote by C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} the family of plane convex bodies. Let ϕk(C)=sup{ϕk(C)∣C∈C}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{k}({\mathcal {C}})=\sup \{\phi _{k}(C)\mid C\in {\mathcal {C}}\}$$\end{document}. In this paper we prove ϕ9(C)=3-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{9}({\mathcal {C}})=\sqrt{3}-1$$\end{document}.
引用
收藏
相关论文
共 50 条