On periodic perturbations of uniform motion of Maxwell's planetary ring

被引:3
|
作者
Pascual F.G. [1 ]
机构
[1] Department of Mathematics/Statistics, Winona State University, Winona
关键词
Lyapunov center theorem; Maxwell's planetary ring; periodic perturbations; Relative equilibrium;
D O I
10.1023/A:1022688312203
中图分类号
学科分类号
摘要
We examine the case when equally sized small moons arrange themselves on the vertices of a regular n-gon for n ≥ 7. For n ≥ 4, there are at least 3 pure imaginary characteristic exponents, each of which has multiplicity = 1, a surprising result that makes it possible to apply the Lyapunov center theorem to verify the existence of some periodic perturbations. For sufficiently large n, when the regular n-gon is the unique central configuration, the number of families of periodic perturbations is at least equal to 2n - ⌊(n + 1)/4⌋, where ⌊x⌋ is the greatest integer less than or equal to x. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:47 / 72
页数:25
相关论文
共 50 条
  • [1] Planetary motion ring network
    Yamauchi, M
    Matsuo, A
    Konuma, R
    DIGITAL CONVERGENCE FOR CREATIVE DIVERGENCE, VOL I: TECHNICAL SPEECH SESSIONS, 1999, : 253 - 260
  • [2] Regions of a satellite’s motion in a Maxwell’s ring system of N bodies
    Maria N. Croustalloudi
    Tilemahos J. Kalvouridis
    Astrophysics and Space Science, 2011, 331 : 497 - 510
  • [3] Regions of a satellite's motion in a Maxwell's ring system of N bodies
    Croustalloudi, Maria N.
    Kalvouridis, Tilemahos J.
    ASTROPHYSICS AND SPACE SCIENCE, 2011, 331 (02) : 497 - 510
  • [4] Analytical direct planetary perturbations on the orbital motion of satellites
    Julien Frouard
    Tadashi Yokoyama
    Celestial Mechanics and Dynamical Astronomy, 2013, 115 : 59 - 79
  • [5] Analytical direct planetary perturbations on the orbital motion of satellites
    Frouard, Julien
    Yokoyama, Tadashi
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 115 (01): : 59 - 79
  • [6] 3-DIMENSIONAL PERTURBATIONS OF PARTICLES IN A NARROW PLANETARY RING
    KOLVOORD, RA
    BURNS, JA
    ICARUS, 1992, 95 (02) : 253 - 264
  • [7] Planetary perturbations on the 2 : 3 mean motion resonance with Neptune
    Fuse, T
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2002, 54 (03) : 493 - 499
  • [8] Saturn's periodic magnetic field perturbations caused by a rotating partial ring current
    Brandt, P. C.
    Khurana, K. K.
    Mitchell, D. G.
    Sergis, N.
    Dialynas, K.
    Carbary, J. F.
    Roelof, E. C.
    Paranicas, C. P.
    Krimigis, S. M.
    Mauk, B. H.
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [9] Resonant periodic motion and the stability of extrasolar planetary systems
    Hadjidemetriou, JD
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2002, 83 (1-4): : 141 - 154
  • [10] Resonant Periodic Motion and the Stability of Extrasolar Planetary Systems
    John D. Hadjidemetriou
    Celestial Mechanics and Dynamical Astronomy, 2002, 83 : 141 - 154