Fracture is one of the most important factors through the whole process of low-permeability reservoir development. Biandong oilfield is a typical low-permeability fractured sandstone reservoir, and has stepped into high water cut stage; thus, the waterflooding effect is poor. Therefore, many contradictions such as high moisture content, decreasing production speed, and low recovery efficiency are becoming increasingly prominent, which have seriously hindered the sustainable development, and need to be solved urgently. However, few such studies on reservoir characterization in low-permeability fractured sandstone reservoir have been conducted in China. In this study, through comprehensive analysis on reservoir characterization and sedimentary environment, significant results are achieved. Three types of fracture occurrence are identified; they are high-angle fracture, low-angle fracture, and horizontal fracture, respectively. Two types of reservoir pore (primary porosity and secondary porosity) are recognized based on thin-section observation and analysis. The diagenetic stage of Biandong oilfield are divided into three stages, early A, early B, and late A, respectively. Finally, a regional discrete fracture network model is established with Fisher’s algorithm based on three-dimensional geological model. All the research results presented above can make a significant instructing function for making reservoir development plan and improving recovery efficiency.