Assessment of the reducing capacity of processed fruit juices with the copper(I)/4,4′-dicarboxy-2,2′-biquinoline complexes

被引:0
|
作者
Letícia Cristina Viana Miguel
Ana Beatriz Ramos de Oliveira Pinn
Horacio Dorigan Moya
机构
[1] CEPES (Centro de Estudos,Faculdade de Medicina da Fundação do ABC
[2] Pesquisa,undefined
[3] Prevenção e Tratamento em Saúde),undefined
来源
关键词
Reducing capacity; Processed food; Fruit juices; Copper(I); 4,4′-dicarboxy-2,2′-biquinoline acid;
D O I
暂无
中图分类号
学科分类号
摘要
An alternative method for quantification of the total reducing capacity (TRC) of processed ready-to-drink fruit juices (orange, grape, peach, mango, cashew, strawberry, apple and guava) is suggested. The spectrophotometric procedure is based on the reduction of Cu(II) to Cu(I) by antioxidants (present in the samples) in aqueous buffered solution (pH 7.0), containing 4,4′-dicarboxy-2,2′-biquinoline acid (H2BCA), yielding the CuBCA23-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{Cu}}\left( {\text{BCA}} \right)_{2}^{3 - } $$\end{document} complexes. The absorbance values at 558 nm (A558 nm) of the CuBCA23-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{Cu}}\left( {\text{BCA}} \right)_{2}^{3 - } $$\end{document} complexes obtained with juice samples were compared with A558 nm values of the same complexes obtained with a standard ascorbic acid solution and used to quantify and express the reducing capacity of each sample. Regarding orange juices a positive relationship between the TRC values using the CuBCA23-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{Cu}}\left( {\text{BCA}} \right)_{2}^{3 - } $$\end{document} complexes and the labelled ascorbic acid (AA) content along with the total polyphenol content (TPC) was measured. Grape juices showed the best positive correlation was verified between the TRC (with the CuBCA23-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{Cu}}\left( {\text{BCA}} \right)_{2}^{3 - } $$\end{document} complexes) and the TPC. While other fruit juices showed good agreement of TRC values with CuBCA23-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{Cu}}\left( {\text{BCA}} \right)_{2}^{3 - } $$\end{document} complexes and DPPH reagent. The proposed method may be applied to measure the TRC of beers and wines and also for biological samples like serum and follicular fluid.
引用
收藏
页码:1331 / 1338
页数:7
相关论文
共 50 条
  • [1] Assessment of the reducing capacity of processed fruit juices with the copper(I)/4,4′-dicarboxy-2,2′-biquinoline complexes
    Viana Miguel, Leticia Cristina
    Ramos de Oliveira Pinn, Ana Beatriz
    Moya, Horacio Dorigan
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2018, 55 (04): : 1331 - 1338
  • [2] A Comprehensive Study of the Use of Cu(I)/4,4′-Dicarboxy-2,2′-biquinoline Complexes to Measure the Total Reducing Capacity: Application in Herbal Extracts
    Manoel, Hariane R.
    Moya, Horacio D.
    MOLECULES, 2015, 20 (12): : 22411 - 22421
  • [3] PH AND BUFFERING IN THE BICINCHONINIC ACID (4,4'-DICARBOXY-2,2'-BIQUINOLINE) PROTEIN ASSAY
    ZHANG, JX
    HALLING, PJ
    ANALYTICAL BIOCHEMISTRY, 1990, 188 (01) : 9 - 10
  • [4] AN EFFICIENT PREPARATION OF 4,4'-DICARBOXY-2,2'-BIPYRIDINE
    OKI, AR
    MORGAN, RJ
    SYNTHETIC COMMUNICATIONS, 1995, 25 (24) : 4093 - 4097
  • [5] Quantification of some nonsteroidal anti-inflammatory drugs as reducing agents of Cu(II)/4,4′-dicarboxy-2,2′-biquinoline complexes in cationic micellar medium
    Braga, Marion Coting
    Requeijo, Thais Boscolo
    Cruz Franco, Andressa Maia
    Coichev, Nina
    Moya, Horacio Dorigan
    ANALYTICAL METHODS, 2011, 3 (07) : 1637 - 1642
  • [6] Synthesis and characterization of rhenium(I) 4,4′-dicarboxy-2,2′-bipyridine tricarbonyl complexes for solar energy conversion
    Komreddy, Venugopal
    Ensz, Kevin
    Nguyen, Huy
    Rillema, D. Paul
    INORGANICA CHIMICA ACTA, 2020, 511 (511)
  • [7] High quantum yield sensitization of nanocrystalline titanium dioxide photoelectrodes with cis-dicyanobis(4,4′-dicarboxy-2,2′-bipyridine)osmium(II) ortris(4,4′-dicarboxy-2,2′-bipyridine)osmium(II) complexes
    Sauvé, G
    Cass, ME
    Doig, SJ
    Lauermann, I
    Pomykal, K
    Lewis, NS
    JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (15): : 3488 - 3491
  • [8] PHOTOELECTROCHEMICAL PROPERTIES OF BIS(2,2'-BIPYRIDINE)(4,4'-DICARBOXY-2,2'-BIPYRIDINE)RUTHENIUM(II) CHLORIDE
    SHIMIDZU, T
    IYODA, T
    IZAKI, K
    JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (04): : 642 - 645
  • [9] Electron spectroscopic studies of bis-(2,2′-bipyridine)-(4,4′-dicarboxy-2,2′-bipyridine)-ruthenium(II) and bis-(2,2′-bipyridine)-(4,4′-dicarboxy-2,2′-bipyridine)-osmium(II) adsorbed on nanostructured TiO2 and ZnO surfaces
    Westermark, K
    Rensmo, H
    Lees, AC
    Vos, JG
    Siegbahn, H
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (39): : 10108 - 10113
  • [10] Syntheses of mixed ligands complexes of Ru(II) with 4,4′-dicarboxy-2,2′-bipyridine and substituted pteridinedione and the use of these complexes in electrochemical photovoltaic cells
    Anandan, S
    Latha, S
    Maruthamuthu, P
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2002, 150 (1-3) : 167 - 175