Wavelet solution of a strongly nonlinear Lane–Emden equation

被引:0
|
作者
Diksha Tiwari
Amit K. Verma
Carlo Cattani
机构
[1] University of Vienna,Faculty of Mathematics
[2] IIT Patna,Department of Mathematics
[3] University of Tuscia,Engineering School (DEIM)
来源
Journal of Mathematical Chemistry | 2022年 / 60卷
关键词
Quasilinearization; Newton–Raphson; Legendre; Hermite; Chebyshev; Laguerre; Gegenbauer; Singular boundary value problems; 65T60; 34B16;
D O I
暂无
中图分类号
学科分类号
摘要
Capturing solution near the singular point of any nonlinear SBVPs is challenging because coefficients involved in the differential equation blow up near singularities. In this article, we aim to construct a general method based on orthogonal polynomials as wavelets, i.e., orthogonal polynomial wavelet method (OPWM). We also discuss the convergence of OPWM as a particular case. We discuss multiresolution analysis for wavelets generated by orthogonal polynomials, e.g., Hermite, Legendre, Chebyshev, Laguerre, and Gegenbauer. Then we use these orthogonal polynomial wavelets for solving nonlinear SBVPs. These wavelets can deal with singularities easily and efficiently. To deal with the nonlinearity, we use both Newton’s quasilinearization and the Newton–Raphson method. To show the importance and accuracy of the proposed methods, we solve the Lane–Emden type of problems and compare the computed solutions with the known solutions. As the resolution is increased the computed solutions converge to exact solutions or known solutions.
引用
收藏
页码:2054 / 2080
页数:26
相关论文
共 50 条
  • [1] Wavelet solution of a strongly nonlinear Lane-Emden equation
    Tiwari, Diksha
    Verma, Amit K.
    Cattani, Carlo
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (10) : 2054 - 2080
  • [2] Taylor wavelet solution of linear and nonlinear Lane-Emden equations
    Gumgum, Sevin
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 (158) : 44 - 53
  • [3] Taylor series solution for Lane–Emden equation
    Ji-Huan He
    Fei-Yu Ji
    Journal of Mathematical Chemistry, 2019, 57 : 1932 - 1934
  • [4] SOLUTION OF LANE-EMDEN EQUATION IN SERIES
    SEIDOV, ZF
    KUZAKHMEDOV, RH
    ASTRONOMICHESKII ZHURNAL, 1977, 54 (03): : 707 - 708
  • [5] ON THE ANALYTIC SOLUTION OF THE LANE-EMDEN EQUATION
    ADOMIAN, G
    RACH, R
    SHAWAGFEH, NT
    FOUNDATIONS OF PHYSICS LETTERS, 1995, 8 (02) : 161 - 181
  • [6] Composite Lane-Emden Equation as a Nonlinear Poisson Equation
    N. Riazi
    M. Mohammadi
    International Journal of Theoretical Physics, 2012, 51 : 1276 - 1283
  • [7] Composite Lane-Emden Equation as a Nonlinear Poisson Equation
    Riazi, N.
    Mohammadi, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (04) : 1276 - 1283
  • [8] Taylor series solution for Lane-Emden equation
    He, Ji-Huan
    Ji, Fei-Yu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (08) : 1932 - 1934
  • [9] Approximate implicit solution of a Lane-Emden equation
    Momoniat, E
    Harley, C
    NEW ASTRONOMY, 2006, 11 (07) : 520 - 526
  • [10] NONPERTURBATIVE APPROXIMATE SOLUTION FOR LANE-EMDEN EQUATION
    SHAWAGFEH, NT
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (09) : 4364 - 4369