Partitioning of Fe2O3 in peridotite partial melting experiments over a range of oxygen fugacities elucidates ferric iron systematics in mid-ocean ridge basalts and ferric iron content of the upper mantle

被引:0
|
作者
Fred A. Davis
Elizabeth Cottrell
机构
[1] University of Minnesota Duluth,Department of Earth and Environmental Sciences
[2] Smithsonian Institution,National Museum of Natural History
关键词
MORB; Oxygen fugacity; Experimental petrology; Mantle petrology;
D O I
暂无
中图分类号
学科分类号
摘要
Basalts and peridotites from mid-ocean ridges record fO2 near the quartz-fayalite-magnetite buffer (QFM), but peridotite partial melting experiments have mostly been performed in graphite capsules (~ QFM-3), precluding evaluation of ferric iron’s behavior during basalt generation. We performed experiments at 1.5 GPa, 1350–1400 °C, and fO2 from about QFM-3 to QFM+3 to investigate the anhydrous partitioning behavior of Fe2O3 between silicate melts and coexisting peridotite mineral phases. We find spinel/melt partitioning of Fe2O3 (DFe2O3spl/melt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{spl}/\mathrm{melt}}$$\end{document}) increases as spinel Fe2O3 concentrations increase, independent of increases in fO2, and decreases with temperature, which is consistent with new and previous experiments at 0.1 MPa. We find DFe2O3opx/melt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$\end{document} = 0.63 ± 0.10 and DFe2O3cpx/melt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{cpx}/\mathrm{melt}}$$\end{document} = 0.78 ± 0.30. MORB Fe2O3 and Na2O concentrations are consistent with a modeled MORB source with Fe2O3 = 0.48 ± 0.03 wt% (Fe3+/ΣFe = 0.053 ± 0.003) at potential temperatures (TP) from 1320 to 1440 °C. The temperature-dependence of the DFe2O3spl/melt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{spl}/\mathrm{melt}}$$\end{document} function alone allows ~ 40% of the variation in MORB compositions. If we allow DFe2O3opx/melt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$\end{document} and DFe2O3opx/melt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$\end{document} to also vary with temperature by tying them to spinel Fe2O3 through intermineral partitioning, then all the MORB data are within error of the model. Our model Fe2O3 concentration for the MORB source would require that the convecting mantle be more oxidized at a given depth than recorded by continental mantle xenoliths. Our result is supported by thermodynamic models of mantle with Fe3+/ΣFe = 0.03 that predict fO2 of ~ QFM-1 near the garnet-spinel transition, which is inconsistent with fO2 of MORB. Our results support previous suggestions that redox melting may occur between 200 and 250 km depth.
引用
收藏
相关论文
共 3 条