Characteristic functions as distributional boundary values of analytic functions in tube domains

被引:0
|
作者
Saulius Norvidas
机构
[1] Vilnius University,Institute of Mathematics and Informatics
[2] Mykolas Romeris University,undefined
来源
关键词
characteristic functions; positive definite functions; distributions; completely monotonic functions; convex cones; complex tubular domains; Plemelj formulas; 60E10; 42A82; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
We propose necessary and sufficient conditions for a complex-valued function f on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^n} $\end{document} to be a characteristic function of a probability measure. Certain analytic extensions of f to tubular domains in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{C}}^n} $\end{document} are studied. In order to extend the class of functions under study, we also consider the case where f is a generalized function (distribution). The main result is given in terms of completely monotonic functions on convex cones in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^n} $\end{document}.
引用
收藏
页码:192 / 202
页数:10
相关论文
共 50 条