Anomalies in (2+1)D Fermionic Topological Phases and (3+1)D Path Integral State Sums for Fermionic SPTs

被引:0
|
作者
Srivatsa Tata
Ryohei Kobayashi
Daniel Bulmash
Maissam Barkeshli
机构
[1] University of Maryland,Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics
[2] University of Tokyo,Institute for Solid State Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a (2+1)D fermionic topological order and a symmetry fractionalization class for a global symmetry group G, we show how to construct a (3+1)D topologically invariant path integral for a fermionic G symmetry-protected topological state (G-FSPT), in terms of an exact combinatorial state sum. This provides a general way to compute anomalies in (2+1)D fermionic symmetry-enriched topological states of matter. Equivalently, our construction provides an exact (3+1)D combinatorial state sum for a path integral of any FSPT that admits a symmetry-preserving gapped boundary, which includes the (3+1)D topological insulators and superconductors in class AII, AIII, DIII, and CII that arise in the free fermion classification. Our construction proceeds by using the fermionic topological order (characterized by a super-modular tensor category) and symmetry fractionalization data to define a (3+1)D path integral for a bosonic theory that hosts a non-trivial emergent fermionic particle, and then condensing the fermion by summing over closed 3-form Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2$$\end{document} background gauge fields. This procedure involves a number of non-trivial higher-form anomalies associated with Fermi statistics and fractional quantum numbers that need to be appropriately canceled off with a Grassmann integral that depends on a generalized spin structure. We show how our construction reproduces the Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document} anomaly indicator for time-reversal symmetric topological superconductors with T2=(-1)F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}^2 = (-1)^F$$\end{document}. Mathematically, with some standard technical assumptions, this implies that our construction gives a combinatorial state sum on a triangulated 4-manifold that can distinguish all Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document}Pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pin}^+$$\end{document} smooth bordism classes. As such, it contains the topological information encoded in the eta invariant of the pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} Dirac operator, thus giving an example of a state sum TQFT that can distinguish exotic smooth structure.
引用
收藏
页码:199 / 336
页数:137
相关论文
共 50 条
  • [1] Anomalies in (2+1)D Fermionic Topological Phases and (3+1)D Path Integral State Sums for Fermionic SPTs
    Tata, Srivatsa
    Kobayashi, Ryohei
    Bulmash, Daniel
    Barkeshli, Maissam
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (01) : 199 - 336
  • [2] (3+1)-dimensional path integral state sums on curved U(1) bundles and U(1) anomalies of (2+1)-dimensional topological phases
    Kobayashi, Ryohei
    Barkeshli, Maissam
    PHYSICAL REVIEW B, 2024, 110 (15)
  • [3] Classification of (2+1)D invertible fermionic topological phases with symmetry
    Barkeshli, Maissam
    Chen, Yu-An
    Hsin, Po-Shen
    Manjunath, Naren
    PHYSICAL REVIEW B, 2022, 105 (23)
  • [4] Global anomalies on the surface of fermionic symmetry-protected topological phases in (3+1) dimensions
    Hsieh, Chang-Tse
    Cho, Gil Young
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2016, 93 (07)
  • [5] Anomaly cascade in (2+1)-dimensional fermionic topological phases
    Bulmash, Daniel
    Barkeshli, Maissam
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [6] FERMIONIC STATES IN (2+1) TOPOLOGICAL THEORY
    KHLEBNIKOV, SY
    MODERN PHYSICS LETTERS A, 1989, 4 (15) : 1419 - 1422
  • [7] Theory of (2+1)-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries
    Lan, Tian
    Kong, Liang
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2016, 94 (15)
  • [8] Braiding statistics and link invariants of bosonic/fermionic topological quantum matter in 2+1 and 3+1 dimensions
    Putrov, Pavel
    Wang, Juven
    Yau, Shing-Tung
    ANNALS OF PHYSICS, 2017, 384 : 254 - 287
  • [9] Absolute anomalies in (2+1)D symmetry-enriched topological states and exact (3+1)D constructions
    Bulmash, Daniel
    Barkeshli, Maissam
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [10] Boundary Supersymmetry of (1+1)D Fermionic Symmetry-Protected Topological Phases
    Prakash, Abhishodh
    Wang, Juven
    PHYSICAL REVIEW LETTERS, 2021, 126 (23)