The power graph of a torsion-free group

被引:0
|
作者
Peter J. Cameron
Horacio Guerra
Šimon Jurina
机构
[1] University of St Andrews,
[2] School of Mathematics and Statistics,undefined
来源
Journal of Algebraic Combinatorics | 2019年 / 49卷
关键词
Power graph; Directed power graph; Torsion-free group; 05C25; 20F99;
D O I
暂无
中图分类号
学科分类号
摘要
The power graphP(G) of a group G is the graph whose vertex set is G, with x and y joined if one is a power of the other; the directed power graphP→(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{P}(G)$$\end{document} has the same vertex set, with an arc from x to y if y is a power of x. It is known that, for finite groups, the power graph determines the directed power graph up to isomorphism. However, it is not true that any isomorphism between power graphs induces an isomorphism between directed power graphs. Moreover, for infinite groups the power graph may fail to determine the directed power graph. In this paper, we consider power graphs of torsion-free groups. Our main results are that, for torsion-free nilpotent groups of class at most 2, and for groups in which every non-identity element lies in a unique maximal cyclic subgroup, the power graph determines the directed power graph up to isomorphism. For specific groups such as Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document} and Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}, we obtain more precise results. Any isomorphism P(Z)→P(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\mathbb {Z})\rightarrow P(G)$$\end{document} preserves orientation, so induces an isomorphism between directed power graphs; in the case of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}, the orientations are either all preserved or all reversed. We also obtain results about groups in which every element is contained in a unique maximal cyclic subgroup (this class includes the free and free abelian groups), and about subgroups of the additive group of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document} and about Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}^n$$\end{document}.
引用
收藏
页码:83 / 98
页数:15
相关论文
共 50 条
  • [1] The power graph of a torsion-free group
    Cameron, Peter J.
    Guerra, Horacio
    Jurina, Simon
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (01) : 83 - 98
  • [2] The power graph of a torsion-free group determines the directed power graph
    Zahirovic, Samir
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 109 - 118
  • [3] The power graph of a torsion-free group of nilpotency class 2
    Samir Zahirović
    Journal of Algebraic Combinatorics, 2022, 55 : 715 - 727
  • [4] The power graph of a torsion-free group of nilpotency class 2
    Zahirovic, Samir
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 715 - 727
  • [5] PROJECTIONS OF A METABELIAN TORSION-FREE GROUP
    PEKELIS, AS
    SADOVSKII, LE
    DOKLADY AKADEMII NAUK SSSR, 1963, 151 (01): : 42 - &
  • [6] The universal torsion-free image of a group
    Brodsky, SD
    Howie, J
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 98 (1) : 209 - 228
  • [7] The universal torsion-free image of a group
    Sergei D. Brodsky
    James Howie
    Israel Journal of Mathematics, 1997, 98 : 209 - 228
  • [8] A finitely presented torsion-free simple group
    Rattaggi, Diego
    JOURNAL OF GROUP THEORY, 2007, 10 (03) : 363 - 371
  • [9] ON A PRODUCT OF FINITE SUBSETS IN A TORSION-FREE GROUP
    BRAILOVSKY, LV
    FREIMAN, GA
    JOURNAL OF ALGEBRA, 1990, 130 (02) : 462 - 476
  • [10] CLASSIFYING TORSION-FREE SUBGROUPS OF THE PICARD GROUP
    BRUNNER, AM
    FRAME, ML
    LEE, YW
    WIELENBERG, NJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) : 205 - 235