Integral foliated simplicial volume of aspherical manifolds

被引:0
|
作者
Roberto Frigerio
Clara Löh
Cristina Pagliantini
Roman Sauer
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Universität Regensburg,Fakultät für Mathematik
[3] ETH Zentrum,Department Mathematik
[4] Karlsruhe Institute of Technology,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Simplicial volumes measure the complexity of fundamental cycles of manifolds. In this article, we consider the relation between the simplicial volume and two of its variants — the stable integral simplicial volume and the integral foliated simplicial volume. The definition of the latter depends on a choice of a measure preserving action of the fundamental group on a probability space.
引用
收藏
页码:707 / 751
页数:44
相关论文
共 50 条
  • [1] Integral foliated simplicial volume of aspherical manifolds
    Frigerio, Roberto
    Loeh, Clara
    Pagliantini, Cristina
    Sauer, Roman
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 216 (02) : 707 - 751
  • [2] Integral foliated simplicial volume of hyperbolic 3-manifolds
    Loeh, Clara
    Pagliantini, Cristina
    GROUPS GEOMETRY AND DYNAMICS, 2016, 10 (03) : 825 - 865
  • [3] On the simplicial volume and the Euler characteristic of (aspherical) manifolds
    Loeh, Clara
    Moraschini, Marco
    Raptis, George
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [4] On the simplicial volume and the Euler characteristic of (aspherical) manifolds
    Clara Löh
    Marco Moraschini
    George Raptis
    Research in the Mathematical Sciences, 2022, 9
  • [5] Integral foliated simplicial volume and circle foliations
    Campagnolo, Caterina
    Corro, Diego
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023, 15 (01) : 155 - 184
  • [6] Amenable covers and integral foliated simplicial volume
    Loeh, Clara
    Moraschini, Marco
    Sauer, Roman
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 1112 - 1136
  • [7] Cost vs. integral foliated simplicial volume
    Loeh, Clara
    GROUPS GEOMETRY AND DYNAMICS, 2020, 14 (03) : 899 - 916
  • [8] Aspherical manifolds, relative hyperbolicity, simplicial volume and assembly maps
    Belegradek, Igor
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1341 - 1354
  • [9] Integral foliated simplicial volume and S1-actions
    Fauser, Daniel
    FORUM MATHEMATICUM, 2021, 33 (03) : 773 - 788
  • [10] Odd manifolds of small integral simplicial volume
    Loeh, Clara
    ARKIV FOR MATEMATIK, 2018, 56 (02): : 351 - 375