Multiple blow-up for a porous medium equation with reaction

被引:0
|
作者
Noriko Mizoguchi
Fernando Quirós
Juan Luis Vázquez
机构
[1] Tokyo Gakugei University,Department of Mathematics
[2] Japan Science and Technology Agency (JST),Precursory Research for Embryonic Science and Technology (PRESTO)
[3] Universidad Autónoma de Madrid,Departamento de Matemáticas
[4] Universidad Autónoma de Madrid,Departamento de Matemáticas and ICMAT
来源
Mathematische Annalen | 2011年 / 350卷
关键词
35K20; 35K55; 58K57;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is concerned with the Cauchy problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll}\partial_t u = \Delta u^m + u^p & \quad {\rm in}\; \mathbb R^N \times (0,\infty),\\ u(x,0) = u_0(x) \geq 0 & \quad {\rm in}\; \mathbb R^N, \end{array}\right.$$\end{document}with p, m > 1. A solution u with bounded initial data is said to blow up at a finite time T if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\lim {\rm sup}_{t \nearrow T}||u(t)||_{L^\infty(\mathbb{R}^N)} =\infty}}$$\end{document}. For N ≥ 3 we obtain, in a certain range of values of p, weak solutions which blow up at several times and become bounded in intervals between these blow-up times. We also prove a result of a more technical nature: proper solutions are weak solutions up to the complete blow-up time.
引用
收藏
页码:801 / 827
页数:26
相关论文
共 50 条