Near-limit propagation of gaseous detonations in narrow annular channels

被引:0
|
作者
Y. Gao
H. D. Ng
J. H. S. Lee
机构
[1] McGill University,Department of Mechanical Engineering
[2] Concordia University,Department of Mechanical and Industrial Engineering
来源
Shock Waves | 2017年 / 27卷
关键词
Annular channels; Local velocity fluctuation; Detonation limits; Single-headed spinning detonation; Cellular structure;
D O I
暂无
中图分类号
学科分类号
摘要
New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+2.5O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}\hbox {H}_{2}+ 2.5\hbox {O}_{2}$$\end{document} mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2+2.5O2+85%Ar,C2H2+2.5O2+70%Ar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}\hbox {H}_{2} \,{+}\, 2.5\hbox {O}_{2}\,{+}\, 85 \ \% \hbox { Ar},\, \hbox {C}_{2}\hbox {H}_{2} \,{+}\, 2.5\hbox {O}_{2}\,{+}\, 70 \ \% \hbox {Ar}$$\end{document}, C3H8+5O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{3}\hbox {H}_{8}\,{+}\,5\hbox {O}_{2}$$\end{document}, and CH4+2O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CH}_{4} \,{+}\, 2\hbox {O}_{2}$$\end{document} were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5–15 % far from the limits and the velocity rapidly decreases to 0.7VCJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.7V_{\mathrm{CJ}}$$\end{document}–0.8VCJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8V_{\mathrm{CJ}}$$\end{document} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down “zig zag” mode in a two-dimensional, rectangular channel.
引用
收藏
页码:199 / 207
页数:8
相关论文
共 50 条
  • [1] Near-limit propagation of gaseous detonations in narrow annular channels
    Gao, Y.
    Ng, H. D.
    Lee, J. H. S.
    SHOCK WAVES, 2017, 27 (02) : 199 - 207
  • [2] Propagation of near-limit gaseous detonations in small diameter tubes
    Camargo, Alexandra
    Ng, Hoi Dick
    Chao, Jenny
    Lee, John H. S.
    SHOCK WAVES, 2010, 20 (06) : 499 - 508
  • [3] Propagation of near-limit gaseous detonations in small diameter tubes
    Alexandra Camargo
    Hoi Dick Ng
    Jenny Chao
    John H. S. Lee
    Shock Waves, 2010, 20 : 499 - 508
  • [4] Propagation of near-limit gaseous detonations in rough-walled tubes
    T. Ren
    Y. Yan
    H. Zhao
    J. H. S. Lee
    H. D. Ng
    Shock Waves, 2020, 30 : 769 - 780
  • [5] Propagation of near-limit gaseous detonations in rough-walled tubes
    Ren, T.
    Yan, Y.
    Zhao, H.
    Lee, J. H. S.
    Ng, H. D.
    SHOCK WAVES, 2020, 30 (7-8) : 769 - 780
  • [6] Near-limit detonations of methane–oxygen mixtures in long narrow tubes
    W. Cao
    H. D. Ng
    J. H. S. Lee
    Shock Waves, 2020, 30 : 713 - 719
  • [7] Near-limit detonations of methane-oxygen mixtures in long narrow tubes
    Cao, W.
    Ng, H. D.
    Lee, J. H. S.
    SHOCK WAVES, 2020, 30 (7-8) : 713 - 719
  • [8] Experimental investigation of near-limit gaseous detonations in small diameter spiral tubing
    Cao, Wei
    Gao, Dayuan
    Hoi Dick Ng
    Lee, John H. S.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (03) : 3555 - 3563
  • [9] Investigation of the propagation modes for gaseous detonation at near-limit condition
    Yan B.
    Zhang B.
    Gao Y.
    Lyu S.
    Zhang, Bo (zhangb@live.cn), 2018, Explosion and Shock Waves (38): : 1435 - 1440
  • [10] Propagation mechanism of gaseous detonations in annular channels with spiral for acetylene-oxygen mixtures
    Yang, Tianwei
    Ning, Jianguo
    Li, Jian
    FUEL, 2021, 290