The Weighted Hp Estimates for Commutators of Fractional Integrals

被引:0
|
作者
Yanyan Han
Huoxiong Wu
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Potential Analysis | 2023年 / 59卷
关键词
Fractional integrals; Commutators; Muckenhoupt weights; Weighted BMO spaces; Weighted Hardy spaces; Primary 47B47; Secondary 42B20; 42B30; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
For 0 < α < n, let Iα be the Riesz potential operator, b∈Lloc(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b\in L_{\text {loc}}(\mathbb {R}^{n})$\end{document}. Harboure et al. (Illinois J. Math. 41(4), 676–700 1997) showed that when b∈BMO(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b\in BMO(\mathbb {R}^{n})$\end{document}, the commutator [b,Iα] may be not bounded from H1(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(\mathbb {R}^{n})$\end{document} to Ln/(n−α)(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{n/(n-\alpha )}(\mathbb {R}^{n})$\end{document}. In this paper, the authors show that there are nontrivial subspaces of BMO(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$BMO(\mathbb {R}^{n})$\end{document}, when b belongs to these subspaces, such that [b,Iα] is bounded from Hωpp(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\omega ^{p}}^{p}(\mathbb {R}^{n})$\end{document} to Lωqq(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\omega ^{q}}^{q}(\mathbb {R}^{n})$\end{document}, or from Hωpp(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\omega ^{p}}^{p}(\mathbb {R}^{n})$\end{document} to Hωqq(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\omega ^{q}}^{q}(\mathbb {R}^{n})$\end{document} for certain 0 < p ≤ 1 with 1/q = 1/p − α/n and ω∈A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega \in A_{\infty }$\end{document}. The corresponding results for the commutators of fractional integrals with general homogeneous kernels and Hörmander type kernels are also given.
引用
收藏
页码:1827 / 1850
页数:23
相关论文
共 50 条
  • [1] The Weighted Hp Estimates for Commutators of Fractional Integrals
    Han, Yanyan
    Wu, Huoxiong
    POTENTIAL ANALYSIS, 2023, 59 (04) : 1827 - 1850
  • [2] Weighted endpoint estimates for commutators of fractional integrals
    D. Cruz-Uribe
    A. Fiorenza
    Czechoslovak Mathematical Journal, 2007, 57 : 153 - 160
  • [3] Weighted endpoint estimates for commutators of fractional integrals
    Cruz-Uribe, D.
    Fiorenza, Hartford A.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) : 153 - 160
  • [4] Borderline Weighted Estimates for Commutators of Fractional Integrals
    Wang, Zhidan
    Wu, Huoxiong
    Xue, Qingying
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03): : 404 - 425
  • [5] WEIGHTED LIPSCHITZ ESTIMATES FOR COMMUTATORS OF FRACTIONAL INTEGRALS WITH HOMOGENEOUS KERNELS
    Lin, Yan
    Liu, Zongguang
    Pan, Guixia
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2689 - 2700
  • [6] Endpoint estimates and weighted norm inequalities for commutators of fractional integrals
    Cruz-Uribe, D
    Fiorenza, A
    PUBLICACIONS MATEMATIQUES, 2003, 47 (01) : 103 - 131
  • [7] WEIGHTED ESTIMATES FOR VECTOR-VALUED COMMUTATORS OF GENERALIZED FRACTIONAL INTEGRALS
    Chen, Jiecheng
    Yu, Xiao
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1299 - 1320
  • [8] Borderline weighted estimates for commutators of singular integrals
    Carlos Pérez
    Israel P. Rivera-Ríos
    Israel Journal of Mathematics, 2017, 217 : 435 - 475
  • [9] BORDERLINE WEIGHTED ESTIMATES FOR COMMUTATORS OF SINGULAR INTEGRALS
    Perez, Carlos
    Rivera-Rios, Israel P.
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 217 (01) : 435 - 475
  • [10] Weighted endpoint estimates for commutators of Marcinkiewicz integrals
    Pu Zhang
    Acta Mathematica Sinica, English Series, 2010, 26 : 1709 - 1722