Design of heat exchangers via a bioinspired topology optimization framework with physics-informed underlying fields

被引:0
|
作者
Sarah N. Hankins
Ray S. Fertig
机构
[1] University of Wyoming,Department of Mechanical Engineering
关键词
Reaction–Diffusion; Bioinspired; Topology Optimization; Physics-Informed Fields; Heat Exchanger;
D O I
暂无
中图分类号
学科分类号
摘要
A topology optimization framework with physics-informed fields is presented to bridge the gap between implicit and explicit bioinspired techniques. The methodology takes advantage of the reduced optimization space unique to the explicit analysis while intelligently adjusting the topologies through underlying fields. A heat exchanger design problem was used to illustrate the effectiveness of the proposed methodology. The objective was to minimize the average temperature while remaining below the pressure drop of a traditional parallel channel design. Pressure and velocity fields from an open cavity design domain were used to control the length scale and orientation, respectively, of the topology generation process. This resulted in designs that had a minimal pressure drop while following the natural flow path of the heat exchanger. The Darcy flow model was used to permit a rapid analysis during the optimization routine, while the final designs were validated using a high-fidelity RANS model. Four different design cases were run to observe the effect that the underlying fields had on the optimization process. The cases ranged from no underlying fields and a three-parameter optimization space to two underlying fields and a five-parameter optimization space. A Bayesian optimization model was used to explore and exploit each parameter space. Ultimately, the two-field design case highlighted the value of the physics-informed fields as it produced the top performing heat exchanger design. Compared to the traditional parallel channel design, it reduced the average temperature by 68% while maintaining a similar pressure drop.
引用
收藏
相关论文
共 50 条
  • [1] Design of heat exchangers via a bioinspired topology optimization framework with physics-informed underlying fields
    Hankins, Sarah N.
    Fertig III, Ray S. S.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (07)
  • [2] A Physics-Informed Neural Network-based Topology Optimization (PINNTO) framework for structural optimization
    Jeong, Hyogu
    Bai, Jinshuai
    Batuwatta-Gamage, C. P.
    Rathnayaka, Charith
    Zhou, Ying
    Gu, YuanTong
    ENGINEERING STRUCTURES, 2023, 278
  • [3] A complete Physics-Informed Neural Network-based framework for structural topology optimization
    Jeong, Hyogu
    Batuwatta-Gamage, Chanaka
    Bai, Jinshuai
    Xie, Yi Min
    Rathnayaka, Charith
    Zhou, Ying
    Gu, Yuantong
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [4] Simultaneous and meshfree topology optimization with physics-informed Gaussian processes
    Yousefpour, Amin
    Hosseinmardi, Shirin
    Mora, Carlos
    Bostanabad, Ramin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 437
  • [5] An advanced physics-informed neural network-based framework for nonlinear and complex topology optimization
    Jeong, Hyogu
    Batuwatta-Gamage, Chanaka
    Bai, Jinshuai
    Rathnayaka, Charith
    Zhou, Ying
    Gu, Yuantong
    ENGINEERING STRUCTURES, 2025, 322
  • [6] Dynamically configured physics-informed neural network in topology optimization applications
    Yin, Jichao
    Wen, Ziming
    Li, Shuhao
    Zhang, Yaya
    Wang, Hu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 426
  • [7] Physics-informed reinforcement learning optimization of nuclear assembly design
    Radaideh, Majdi, I
    Wolverton, Isaac
    Joseph, Joshua
    Tusar, James J.
    Otgonbaatar, Uuganbayar
    Roy, Nicholas
    Forget, Benoit
    Shirvan, Koroush
    NUCLEAR ENGINEERING AND DESIGN, 2021, 372
  • [8] Physics-informed neural network based topology optimization through continuous adjoint
    Zhao, Xueqi
    Mezzadri, Francesco
    Wang, Tianye
    Qian, Xiaoping
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (08)
  • [9] A framework of data assimilation for wind flow fields by physics-informed neural networks
    Yan, Chang
    Xu, Shengfeng
    Sun, Zhenxu
    Lutz, Thorsten
    Guo, Dilong
    Yang, Guowei
    APPLIED ENERGY, 2024, 371
  • [10] Physics-informed recovery of nonlinear residual stress fields in an inverse continuum framework
    Sanz-Herrera, Jose A.
    Goriely, Alain
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2025, 200