Background geometry in the gauge theory of gravity

被引:0
|
作者
G. A. Sardanashvili
机构
[1] Moscow State University,
来源
关键词
Gauge Theory; Gauge Transformation; Dirac Operator; Fermionic Field; Spinor Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the description of the spontaneous symmetry breaking in the gauge theory of gravity gives rise, in one version of the theory, to the Logunov relativistic theory of gravity generalized to the case of dynamic connections and fermionic fields.
引用
收藏
页码:368 / 375
页数:7
相关论文
共 50 条
  • [1] Background geometry in the gauge theory of gravity
    Sardanashvili, GA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 114 (03) : 368 - 375
  • [2] Gravity and gauge theory
    Weinstein, S
    PHILOSOPHY OF SCIENCE, 1999, 66 (03) : S146 - S155
  • [3] Quantum gravity in a general background gauge
    Brandt, F. T.
    Frenkel, J.
    McKeon, D. G. C.
    PHYSICAL REVIEW D, 2022, 106 (06)
  • [4] Affine gauge theory of gravity and its reduction to the Riemann-Cartan geometry
    Sobreiro, Rodrigo F.
    Vasquez Otoya, Victor J.
    RECENT DEVELOPMENTS IN GRAVITY (NEB XIV), 2011, 283
  • [5] Perturbative gauge theory in a background
    Dietrich, Dennis D.
    Hoyer, Paul
    Jarvinen, Matti
    Peigne, Stephane
    Quark Confinement and the Hadron Spectrum VII, 2007, 892 : 210 - 212
  • [6] Gravity as the square of gauge theory
    Bern, Zvi
    Dennen, Tristan
    Huang, Yu-tin
    Kiermaier, Michael
    PHYSICAL REVIEW D, 2010, 82 (06):
  • [7] Gauge theory of gravity and supergravity
    Kaul, RK
    PHYSICAL REVIEW D, 2006, 73 (06):
  • [8] On perturbative gravity and gauge theory
    Bern, Z
    Dixon, L
    Dunbar, DC
    Grant, AK
    Perelstein, M
    Rozowsky, JS
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 : 194 - 203
  • [9] GRAVITY AS A GAUGE THEORY OF TRANSLATIONS
    Martin-Martin, J.
    Tiemblo, A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (02) : 323 - 335
  • [10] Classical Gauge Theory of Gravity
    G. A. Sardanashvily
    Theoretical and Mathematical Physics, 2002, 132 : 1163 - 1171