Publishing anonymous survey rating data

被引:0
|
作者
Xiaoxun Sun
Hua Wang
Jiuyong Li
Jian Pei
机构
[1] Australian Council for Educational Research,Department of Mathematics Computing
[2] University of Southern Queensland,School of Computer and Information Science
[3] University of South Australia,School of Computing Science
[4] Simon Fraser University,undefined
来源
关键词
-anonymity; Survey rating data; Graphical representation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the challenges of protecting privacy of individuals in the large public survey rating data in this paper. Recent study shows that personal information in supposedly anonymous movie rating records are de-identified. The survey rating data usually contains both ratings of sensitive and non-sensitive issues. The ratings of sensitive issues involve personal privacy. Even though the survey participants do not reveal any of their ratings, their survey records are potentially identifiable by using information from other public sources. None of the existing anonymisation principles (e.g., k-anonymity, l-diversity, etc.) can effectively prevent such breaches in large survey rating data sets. We tackle the problem by defining a principle called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(k,\epsilon)}$$\end{document}-anonymity model to protect privacy. Intuitively, the principle requires that, for each transaction t in the given survey rating data T, at least (k − 1) other transactions in T must have ratings similar to t, where the similarity is controlled by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon}$$\end{document} . The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(k,\epsilon)}$$\end{document} -anonymity model is formulated by its graphical representation and a specific graph-anonymisation problem is studied by adopting graph modification with graph theory. Various cases are analyzed and methods are developed to make the updated graph meet \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(k,\epsilon)}$$\end{document} requirements. The methods are applied to two real-life data sets to demonstrate their efficiency and practical utility.
引用
收藏
页码:379 / 406
页数:27
相关论文
共 50 条
  • [1] Publishing anonymous survey rating data
    Sun, Xiaoxun
    Wang, Hua
    Li, Jiuyong
    Pei, Jian
    DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 23 (03) : 379 - 406
  • [2] (α, k)-anonymous data publishing
    Wong, Raymond
    Li, Jiuyong
    Fu, Ada
    Wang, Ke
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2009, 33 (02) : 209 - 234
  • [3] (α, k)-anonymous data publishing
    Raymond Wong
    Jiuyong Li
    Ada Fu
    Ke Wang
    Journal of Intelligent Information Systems, 2009, 33 : 209 - 234
  • [4] An Anonymous Data Publishing Framework for Streaming Genomic Data
    Wu, Xiang
    Wang, Huanhuan
    Wei, Yuyang
    Mao, Yaqing
    Jiang, Shuguang
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (03) : 546 - 554
  • [5] Research on Anonymous Protection Technology for Big Data Publishing
    Wang, Yuli
    Tian, Jiayin
    Yang, Cheng
    Zhu, Yaping
    PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016, : 438 - 441
  • [6] A k-anonymous rule clustering approach for data publishing
    Ohki M.
    Inuiguchi M.
    1600, Fuji Technology Press (21): : 980 - 988
  • [7] pRate: Anonymous Star Rating with Rating Secrecy
    Liu, Jia
    Manulis, Mark
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY, ACNS 2019, 2019, 11464 : 550 - 570
  • [8] Privacy Preserving Large-Scale Rating Data Publishing
    Sun, Xiaoxun
    Sun, Lili
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2013, 13 (1-3):
  • [9] Rendezvous tunnel for anonymous publishing
    Hermoni, Ofer
    Gilboa, Niv
    Felstaine, Eyal
    Dolev, Shlomi
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2015, 8 (03) : 352 - 366
  • [10] A Survey on Privacy Properties for Data Publishing of Relational Data
    Zigomitros, Athanasios
    Casino, Fran
    Solanas, Agusti
    Patsakis, Constantinos
    IEEE ACCESS, 2020, 8 : 51071 - 51099