A 1.5-Approximation Algorithm for Two-Sided Scaffold Filling

被引:0
|
作者
Nan Liu
Daming Zhu
Haitao Jiang
Binhai Zhu
机构
[1] Shandong University,School of Computer Science and Technology
[2] Shandong Jianzhu University,School of Computer Science and Technology
[3] Montana State University,Department of Computer Science
来源
Algorithmica | 2016年 / 74卷
关键词
Algorithm; Complexity; Performance ratio; Scaffold; Genome;
D O I
暂无
中图分类号
学科分类号
摘要
The scaffold filling problem aims to set up the whole genomes by filling those missing genes into the scaffolds to optimize a similarity measure of genomes. A typical and frequently used measure for the similarity of two genomes is the number of common adjacencies. One-sided scaffold filling is given by a scaffold and a whole genome, and asks to fill the missing genes into that scaffold to result in such a genome that the number of common adjacencies between it and the given genome is maximized. Two-sided scaffold filling is given by two scaffolds, and asks to fill the missing genes into those two scaffolds respectively to result in such two genomes that the number of common adjacencies between them is maximized. One-sided scaffold filling can be approximated to 54\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{4}$$\end{document} by now. However, the algorithmic progress for two-sided scaffold filling seems rare. What we know for two-sided scaffold filling is a 2-approximation algorithm by now. In this paper, we propose a new algorithm for two-sided scaffold filling which can achieve a performance ratio of 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{2}$$\end{document} in O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^3)$$\end{document} time, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} is the number of genes in an output genome. An example can be given to show that the performance ratio 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{2}$$\end{document} for this algorithm is actually tight.
引用
收藏
页码:91 / 116
页数:25
相关论文
共 50 条
  • [1] A 1.5-Approximation Algorithm for Two-Sided Scaffold Filling
    Liu, Nan
    Zhu, Daming
    Jiang, Haitao
    Zhu, Binhai
    ALGORITHMICA, 2016, 74 (01) : 91 - 116
  • [2] A 1.4-Approximation Algorithm for Two-Sided Scaffold Filling
    Ma, Jingjing
    Jiang, Haitao
    Zhu, Daming
    Zhang, Shu
    FRONTIERS IN ALGORITHMICS, FAW 2017, 2017, 10336 : 196 - 208
  • [3] On the solution bound of two-sided scaffold filling
    Ma, Jingjing
    Zhu, Daming
    Jiang, Haitao
    Zhu, Binhai
    THEORETICAL COMPUTER SCIENCE, 2021, 873 : 47 - 63
  • [4] A 1.5-approximation algorithm for sorting by transpositions and transreversals
    Hartman, T
    Sharan, R
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2004, 3240 : 50 - 61
  • [5] A simpler 1.5-approximation algorithm for sorting by transpositions
    Hartman, T
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2003, 2676 : 156 - 169
  • [6] A NEW ALGORITHM FOR TWO-SIDED EIGENVALUE APPROXIMATION
    Andreev, Andrey
    Racheva, Milena
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (09): : 1207 - 1214
  • [7] A 1.5-approximation algorithm for sorting by transpositions and transreversals
    Hartman, T
    Sharan, R
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 70 (03) : 300 - 320
  • [8] A simpler and faster 1.5-approximation algorithm for sorting by transpositions
    Hartman, T
    Shamir, R
    INFORMATION AND COMPUTATION, 2006, 204 (02) : 275 - 290
  • [9] 1.5-approximation algorithm for the 2-Convex Recoloring problem
    Bar-Yehuda, Reuven
    Kutiel, Gilad
    Rawitz, Dror
    DISCRETE APPLIED MATHEMATICS, 2018, 246 : 2 - 11
  • [10] Two-sided filling of capillary defects with penetrant
    Migun, NP
    Prokhorenko, PP
    Rakhubo, VB
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 1997, 33 (11) : 779 - 782