One of the main transitions in evolution is the shift from solitary organisms to societies with reproductive division of labour1,2. Understanding social evolution requires us to determine how ecological, social and genetic factors jointly influence group stability and partitioning of reproduction between group members3,4,5,6,7,8. Here we test the role of the three key factors predicted to influence social evolution by experimentally manipulating them in a social allodapine bee. We show that increased relatedness between nestmates results in more even reproduction among group members and a greater productivity per individual. By contrast, the degree of reproductive skew is not influenced by the opportunity for solitary breeding or by the potential benefits of cooperation. Relatedness also has a positive effect on group stability and overall productivity. These findings are in line with predictions of the tug-of-war models, in which the degree of reproductive division of labour is determined primarily by selfish competition between group members. The alternative view, where the degree of reproductive skew is the outcome of a social contract between potential breeders, was not supported by the data.
机构:
Mem Sloan Kettering Canc Ctr, Program Immunol, 1275 York Ave, New York, NY 10021 USA
Cornell Univ, Weill Cornell Grad Sch Med Sci, Immunol & Microbial Pathogenesis Grad Program, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Program Immunol, 1275 York Ave, New York, NY 10021 USA
Xu, Ke
Shyu, Amy
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Program Immunol, 1275 York Ave, New York, NY 10021 USA
Mem Sloan Kettering Canc Ctr, Louis V Gerstner Jr Grad Sch Biomed Sci, 1275 York Ave, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Program Immunol, 1275 York Ave, New York, NY 10021 USA
Shyu, Amy
Li, Ming O.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Program Immunol, 1275 York Ave, New York, NY 10021 USA
Cornell Univ, Weill Cornell Grad Sch Med Sci, Immunol & Microbial Pathogenesis Grad Program, New York, NY 10065 USA
Mem Sloan Kettering Canc Ctr, Louis V Gerstner Jr Grad Sch Biomed Sci, 1275 York Ave, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Program Immunol, 1275 York Ave, New York, NY 10021 USA