Quantum algorithms for the generalized eigenvalue problem

被引:0
|
作者
Jin-Min Liang
Shu-Qian Shen
Ming Li
Shao-Ming Fei
机构
[1] Capital Normal University,School of Mathematical Science
[2] China University of Petroleum,College of Science
[3] Southern University of Science and Technology,Shenzhen Institute for Quantum Science and Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The generalized eigenvalue (GE) problems are of particular importance in various areas of science engineering and machine learning. We present a variational quantum algorithm for finding the desired generalized eigenvalue of the GE problem, A|ψ⟩=λB|ψ⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}|\psi \rangle =\lambda \mathcal {B}|\psi \rangle $$\end{document}, by choosing suitable loss functions. Our approach imposes the superposition of the trial state and the obtained eigenvectors with respect to the weighting matrix B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} on the Rayleigh quotient. Furthermore, both the values and derivatives of the loss functions can be calculated on near-term quantum devices with shallow quantum circuit. Finally, we propose a full quantum generalized eigensolver (FQGE) to calculate the minimal generalized eigenvalue with quantum gradient descent algorithm. As a demonstration of the principle, we numerically implement our algorithms to conduct a 2-qubit simulation and successfully find the generalized eigenvalues of the matrix pencil (A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {A},\,\mathcal {B})$$\end{document}. The numerically experimental result indicates that FQGE is robust under Gaussian noise.
引用
收藏
相关论文
共 50 条
  • [1] Quantum algorithms for the generalized eigenvalue problem
    Liang, Jin-Min
    Shen, Shu-Qian
    Li, Ming
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2022, 21 (01)
  • [2] GENERALIZED EIGENVALUE PROBLEM IN QUANTUM CHEMISTRY
    FORD, B
    HALL, G
    COMPUTER PHYSICS COMMUNICATIONS, 1974, 8 (05) : 337 - 348
  • [3] HMDR AND FMDR ALGORITHMS FOR THE GENERALIZED EIGENVALUE PROBLEM
    DZENG, DC
    LIN, WW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 112 : 169 - 187
  • [4] COMPLEX GENERALIZED EIGENVALUE PROBLEM IN QUANTUM CHEMISTRY
    严继民
    张启元
    A Monthly Journal of Science, 1983, (07) : 911 - 917
  • [5] On a minimization problem of the maximum generalized eigenvalue: properties and algorithms
    Nishioka, Akatsuki
    Toyoda, Mitsuru
    Tanaka, Mirai
    Kanno, Yoshihiro
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (01) : 303 - 336
  • [6] COMPLEX GENERALIZED EIGENVALUE PROBLEM IN QUANTUM-CHEMISTRY
    YAN, JM
    ZHANG, QY
    KEXUE TONGBAO, 1983, 28 (07): : 911 - 917
  • [7] GENERALIZED EIGENVALUE PROBLEM
    ZAKRAJSEK, E
    COMPUTER JOURNAL, 1977, 20 (01): : 86 - 91
  • [8] GENERALIZED EIGENVALUE PROBLEM
    ZAKRAJSEK, E
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1976, 18 (02): : 155 - 157
  • [9] THEORY OF DECOMPOSITION AND BULGE-CHASING ALGORITHMS FOR THE GENERALIZED EIGENVALUE PROBLEM
    WATKINS, D
    ELSNER, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (03) : 943 - 967
  • [10] New algorithms for computing the minimum eigenpair of the generalized symmetric eigenvalue problem
    Hasan, MA
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV, PROCEEDINGS, 2002, : 767 - 770