Properties of the Set of Admissible “State Control” Pair for a Class of Fractional Semilinear Evolution Control Systems

被引:0
|
作者
Maojun Bin
Haiyun Deng
Yunxiang Li
Zhao Jing
机构
[1] Yulin Normal University,Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
[2] Nanjing Audit University,Department of Applied Mathematics
[3] Hunan City University,School of Mathematics, Computation Sciences
[4] Beibu Gulf University,College of Sciences
关键词
Primary 26A33; Secondary 35R11; 49J20; 90C26; fractional evolution equations; admissible “state control” pair; density; co-density;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss a class of Caputo fractional evolution equations on Banach space with feedback control constraint whose value is non-convex closed in the control space. First, we prove the existence of solutions for the system with feedback control whose values are the extreme points of the convexified constraint that belongs to the original one. Secondly, we study the topological properties of the sets of admissible “state-control” pair for the original system with various feedback control constraints and the relations between them. Moreover, we obtain necessary and sufficient conditions for the solution set of original systems to be closed. In the end, an example is given to illustrate the applications of our main results.
引用
收藏
页码:1275 / 1298
页数:23
相关论文
共 50 条
  • [1] PROPERTIES OF THE SET OF ADMISSIBLE "STATE CONTROL" PAIR FOR A CLASS OF FRACTIONAL SEMILINEAR EVOLUTION CONTROL SYSTEMS
    Bin, Maojun
    Deng, Haiyun
    Li, Yunxiang
    Zhao, Jing
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (04) : 1275 - 1298
  • [2] Control Systems Described by a Class of Fractional Semilinear Evolution Equations and Their Relaxation Property
    Liu, Xiaoyou
    Fu, Xi
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [3] Time optimal control for semilinear fractional evolution feedback control systems
    Bin, Maojun
    OPTIMIZATION, 2019, 68 (04) : 819 - 832
  • [4] OPTIMAL REGIONAL CONTROL FOR A CLASS OF SEMILINEAR FRACTIONAL EVOLUTION EQUATIONS
    Jiang, Caijing
    Xu, Keji
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025,
  • [5] RELAXATION IN CONTROL SYSTEMS OF FRACTIONAL SEMILINEAR EVOLUTION EQUATIONS
    Liu, Xiaoyou
    Fu, Xi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [6] Control systems described by a class of fractional semilinear evolution hemivariational inequalities and their relaxation property
    Li, Jing
    Bin, Maojun
    OPTIMIZATION, 2022, 71 (10) : 2841 - 2863
  • [7] CONTROL SYSTEMS DESCRIBED BY A CLASS OF RIEMANN-LIOUVILLE FRACTIONAL SEMILINEAR EVOLUTION HEMIVARIATIONAL INEQUALITIES
    Shi, Cuiyun
    Bin, Maojun
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (11) : 3432 - 3452
  • [8] Exact determinantions of maximal output admissible set for a class of semilinear discrete systems
    El Bhih, Amine
    Benfatah, Youssef
    Rachik, Mostafa
    ARCHIVES OF CONTROL SCIENCES, 2020, 30 (03): : 523 - 552
  • [9] Distributed robust control for a class of semilinear fractional-order reaction–diffusion systems
    Ailiang Zhao
    Junmin Li
    Yanfang Lei
    Nonlinear Dynamics, 2022, 109 : 1743 - 1762
  • [10] State Feedback Control for a Class of Fractional Order Nonlinear Systems
    Yige Zhao
    Yuzhen Wang
    Haitao Li
    IEEE/CAA Journal of Automatica Sinica, 2016, 3 (04) : 483 - 488