The least dense hyperball covering of regular prism tilings in hyperbolic n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-space

被引:0
|
作者
Jenő Szirmai
机构
[1] Budapest University of Technology and Economics,Department of Geometry, Institute of Mathematics
来源
关键词
Hyperbolic geometry; Prism tilings; Hyperball packings and coverings; Complete orthoschemes; 52C17; 52C22; 52B15;
D O I
10.1007/s10231-014-0460-0
中图分类号
学科分类号
摘要
In this paper, we study regular prism tilings and corresponding least dense hyperball coverings in n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional hyperbolic space Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^n$$\end{document}(n=3,4,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=3,4,5)$$\end{document} by congruent hyperballs. We determine the densities of the least dense hyperball coverings, we formulate two conjectures for the candidates of the least dense hyperball coverings by congruent hyperballs in 3- and 5-dimensional hyperbolic spaces.
引用
收藏
页码:235 / 248
页数:13
相关论文
共 50 条