We determine the ring structure of the equivariant quantum cohomology of the Hilbert scheme of points of ℂ2. The operator of quantum multiplication by the divisor class is a nonstationary deformation of the quantum Calogero-Sutherland many-body system. A relationship between the quantum cohomology of the Hilbert scheme and the Gromov-Witten/Donaldson-Thomas correspondence for local curves is proven.