class group;
Hilbert symbol;
Hilbert genus field;
11R65;
11R37;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The Hilbert genus field of the real biquadratic field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document} is described by Yue (2010) and Bae and Yue (2011) explicitly in the case δ = 2 or p with p ≡ 1 mod 4 a prime and d a squarefree positive integer. In this article, we describe explicitly the Hilbert genus field of the imaginary biquadratic field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document}, where δ = −1,−2 or −p with p ≡ 3mod 4 a prime and d any squarefree integer. This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number.
机构:
School of Mathematical Sciences,University of Science and Technology of ChinaSchool of Mathematical Sciences,University of Science and Technology of China