Hilbert genus fields of biquadratic fields

被引:0
|
作者
Yi Ouyang
Zhe Zhang
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
class group; Hilbert symbol; Hilbert genus field; 11R65; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
The Hilbert genus field of the real biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document} is described by Yue (2010) and Bae and Yue (2011) explicitly in the case δ = 2 or p with p ≡ 1 mod 4 a prime and d a squarefree positive integer. In this article, we describe explicitly the Hilbert genus field of the imaginary biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document}, where δ = −1,−2 or −p with p ≡ 3mod 4 a prime and d any squarefree integer. This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number.
引用
收藏
页码:2111 / 2122
页数:11
相关论文
共 50 条
  • [1] Hilbert genus fields of biquadratic fields
    OUYANG Yi
    ZHANG Zhe
    Science China(Mathematics), 2014, 57 (10) : 2111 - 2122
  • [2] Hilbert genus fields of biquadratic fields
    Ouyang Yi
    Zhang Zhe
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2111 - 2122
  • [3] Hilbert Genus Fields of Imaginary Biquadratic Fields
    Zhe Zhang
    Qin Yue
    Communications in Mathematics and Statistics, 2017, 5 : 175 - 197
  • [4] Hilbert genus fields of real biquadratic fields
    Yi Ouyang
    Zhe Zhang
    The Ramanujan Journal, 2015, 37 : 345 - 363
  • [5] Hilbert genus fields of real biquadratic fields
    Bae, Sunghan
    Yue, Qin
    RAMANUJAN JOURNAL, 2011, 24 (02): : 161 - 181
  • [6] Hilbert genus fields of real biquadratic fields
    Ouyang, Yi
    Zhang, Zhe
    RAMANUJAN JOURNAL, 2015, 37 (02): : 345 - 363
  • [7] Hilbert genus fields of real biquadratic fields
    Sunghan Bae
    Qin Yue
    The Ramanujan Journal, 2011, 24 : 161 - 181
  • [8] Hilbert Genus Fields of Imaginary Biquadratic Fields
    Zhang, Zhe
    Yue, Qin
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2017, 5 (02) : 175 - 197
  • [9] Genus fields of real biquadratic fields
    Qin Yue
    The Ramanujan Journal, 2010, 21 : 17 - 25
  • [10] HILBERT CLASS FIELDS OF REAL BIQUADRATIC FIELDS
    SIME, PJ
    JOURNAL OF NUMBER THEORY, 1995, 50 (01) : 154 - 166