A quadratic lower bound for colourful simplicial depth

被引:0
|
作者
Tamon Stephen
Hugh Thomas
机构
[1] Simon Fraser University,Department of Mathematics
[2] University of New Brunswick,Department of Mathematics and Statistics
来源
关键词
Computational geometry; Carathéodory theorem; Colourful Carathéodory theorem; Simplicial depth; Colourful simplicial depth;
D O I
暂无
中图分类号
学科分类号
摘要
We show that any point in the convex hull of each of (d+1) sets of (d+1) points in ℝd is contained in at least ⌊(d+2)2/4⌋ simplices with one vertex from each set.
引用
收藏
页码:324 / 327
页数:3
相关论文
共 50 条
  • [1] A quadratic lower bound for colourful simplicial depth
    Stephen, Tamon
    Thomas, Hugh
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (04) : 324 - 327
  • [2] A Note on Lower Bounds for Colourful Simplicial Depth
    Deza, Antoine
    Stephen, Tamon
    Xie, Feng
    SYMMETRY-BASEL, 2013, 5 (01): : 47 - 53
  • [3] Colourful simplicial depth
    Deza, A
    Huang, S
    Stephen, T
    Terlaky, T
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (04) : 597 - 615
  • [4] Colourful Simplicial Depth
    Antoine Deza
    Sui Huang
    Tamon Stephen
    Tamas Terlaky
    Discrete & Computational Geometry, 2006, 35 : 597 - 615
  • [5] The colourful simplicial depth conjecture
    Sarrabezolles, Pauline
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 130 : 119 - 128
  • [6] A COMBINATORIAL APPROACH TO COLOURFUL SIMPLICIAL DEPTH
    Deza, Antoine
    Meunier, Frederic
    Sarrabezolles, Pauline
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (01) : 306 - 322
  • [7] Computing Colourful Simplicial Depth and Median in ℝ2
    Greg Aloupis
    Tamon Stephen
    Olga Zasenko
    Theory of Computing Systems, 2022, 66 : 417 - 431
  • [8] Computing Colourful Simplicial Depth and Median in R2
    Aloupis, Greg
    Stephen, Tamon
    Zasenko, Olga
    THEORY OF COMPUTING SYSTEMS, 2022, 66 (02) : 417 - 431
  • [9] LOWER BOUND THEOREMS AND A GENERALIZED LOWER BOUND CONJECTURE FOR BALANCED SIMPLICIAL COMPLEXES
    Klee, Steven
    Novik, Isabella
    MATHEMATIKA, 2016, 62 (02) : 441 - 477
  • [10] A quadratic lower bound for Topswops
    Morales, Linda
    Sudborough, Hal
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (44-46) : 3965 - 3970