A fuzzy logistic regression model based on the least squares estimation

被引:0
|
作者
Yifan Gao
Qiujun Lu
机构
[1] University of Shanghai for Science and Technology,
来源
关键词
Fuzzy logistic regression; Least squares estimation; Kim and Bishu criterion; Fuzzy adjustment term; Capability index; 62A86;
D O I
暂无
中图分类号
学科分类号
摘要
To construct the relationship between fuzzy inputs and fuzzy output described by linguistic variable, we develop a fuzzy logistic regression model, which can be applied for various problems, such as clinical research, risk investment and decision making. In this regard, we introduce the integral calculation of distance of cut sets and a fuzzy adjustment term which could prevent a large fuzzy error for a fuzzy output caused by the output degenerating into crisp number when the independent variables are crisp numbers. The parameters of the fuzzy logistic regression model are derived by means of the least squares method. We adopt three criteria involving mean square error, Kim and Bishu criterion and capability index and also perform two ways of prediction including the in-sample forecast as well as the one-leave-out cross validation. The comparisons with five existing methods show that our proposed method has satisfactory performance and the results are illustrated in some case studies.
引用
收藏
页码:3562 / 3579
页数:17
相关论文
共 50 条