On the topological center of a Banach algebra related to a foundation topological semigroup

被引:0
|
作者
Saeid Maghsoudi
Rasoul Nasr-Isfahani
机构
[1] University of Zanjan,Department of Mathematics
[2] Isfahan University of Technology,Department of Mathematical Sciences
[3] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Semigroup Forum | 2012年 / 84卷
关键词
Arens product; Locally compact semigroups; Topological center;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{S}}$\end{document} be a locally compact semigroup and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{0}^{\infty}({\mathcal{S}},M_{a}({\mathcal{S}}))$\end{document} be the Banach space of all μ-measurable (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu\in M_{a}({\mathcal{S}})$\end{document}) functions vanishing at infinity, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{a}({\mathcal{S}})$\end{document} denotes the algebra of all measures with continuous translations. Recently, we have shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{0}^{\infty}({\mathcal{S}},M_{a}({\mathcal{S}}))^{*}$\end{document} can be equipped with an Arens type product. Here, we show that the topological center of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{0}^{\infty}({\mathcal{S}},M_{a}({\mathcal{S}}))^{*}$\end{document} coincides with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{a}({\mathcal{S}})$\end{document} for a class of locally compact semigroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{S}}$\end{document}: this gives a partial solution to a conjecture raised by the authors.
引用
收藏
页码:33 / 38
页数:5
相关论文
共 50 条