The Invariant Eigen-Operator Method for Hamiltonians with Coordinates-Coordinates Coupling Terms

被引:0
|
作者
Yong-mei Liu
Ying-hua Ji
机构
[1] Jiangxi Normal University,Education College
[2] Jiangxi Normal University,College of Physics and Communication Electronics
关键词
Heisenberg equation; Invariant eigen-operator method; Coupled harmonic oscillators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we apply the method of “invariant eigen-operator” to study the Hamiltonian of harmonic oscillator with couplings and derive their invariant eigen-operator. We first discuss decoupling of coupled harmonic oscillators with the two different quality and frequencies. And then, we propose an operator Hamiltonian to describe the linear lattice chain with Born–von Karman boundary condition. The vibrating spectrum is thus obtained. The results show that, for the system of coupled harmonic oscillators by coordinate coupling or momentum coupling, the invariant eigen operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{Q}$\end{document} of system always has the form of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{Q}=\sum_{j}g_{j}\hat{x}_{j}$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{Q}=\sum_{j}\lambda_{j}\hat{p}_{j}$\end{document} .
引用
收藏
页码:1500 / 1507
页数:7
相关论文
共 50 条