Semi-almost periodic Fourier multipliers on rearrangement-invariant spaces with suitable Muckenhoupt weights

被引:0
|
作者
C. A. Fernandes
A. Yu. Karlovich
机构
[1] Universidade Nova de Lisboa,Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia
来源
Boletín de la Sociedad Matemática Mexicana | 2020年 / 26卷
关键词
Rearrangement-invariant Banach function space; Boyd indices; Muckenhoupt weight; Almost periodic function; Semi-almost periodic function; Fourier multiplier; Primary 42A45; Secondary 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {R}})$$\end{document} be a separable rearrangement-invariant space and w be a suitable Muckenhoupt weight. We show that for any semi-almost periodic Fourier multiplier a on X(R,w)={f:fw∈X(R)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {R}},w)=\{f:fw\in X({\mathbb {R}})\}$$\end{document} there exist uniquely determined almost periodic Fourier multipliers al,ar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_l,a_r$$\end{document} on X(R,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {R}},w)$$\end{document}, such that a=(1-u)al+uar+a0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a=(1-u)a_l+ua_r+a_0, \end{aligned}$$\end{document}for some monotonically increasing function u with u(-∞)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(-\infty )=0$$\end{document}, u(+∞)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(+\infty )=1$$\end{document} and some continuous and vanishing at infinity Fourier multiplier a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_0$$\end{document} on X(R,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {R}},w)$$\end{document}. This result extends previous results by Sarason (Duke Math J 44:357–364, 1977) for L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}})$$\end{document} and by Karlovich and Loreto Hernández (Integral Equ Oper Theor 62:85–128, 2008) for weighted Lebesgue spaces Lp(R,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({\mathbb {R}},w)$$\end{document} with weights in a suitable subclass of the Muckenhoupt class Ap(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p({\mathbb {R}})$$\end{document}.
引用
收藏
页码:1135 / 1162
页数:27
相关论文
共 14 条