On the Connection of Uncertainty Principles for Functions on the Circle and on the Real Line

被引:0
|
作者
Jürgen Prestin
Ewald Quak
Holger Rauhut
Kathi Selig
机构
[1] University of Lübeck,
[2] Institute of Mathematics,undefined
[3] D–23560 Lübeck,undefined
[4] SINTEF Applied Mathematics,undefined
[5] P.O. Box 124 Blindern,undefined
[6] N-0314 Oslo,undefined
[7] Munich University of Technology,undefined
[8] Centre for Mathematical Sciences,undefined
[9] D–80290 München,undefined
关键词
Periodic Function; Real Line; Limit Process; Uncertainty Principle; Theta Function;
D O I
暂无
中图分类号
学科分类号
摘要
An uncertainty principle for 2π-periodic functions and the classical Heisenberg uncertainty principle are shown to be linked by a limit process. Dependent on a parameter, a function on the real line generates periodic functions either by periodization or sampling. It is proven that under certain smoothness conditions, the periodic uncertainty products of the generated functions converge to the real-line uncertainty product of the original function if the parameter tends to infinity. These results are used to find asymptotically optimal sequences for the periodic uncertainty principle, based either on Theta functions or trigonometric polynomials obtained by sampling B-splines.
引用
收藏
页码:387 / 409
页数:22
相关论文
共 50 条