Periodic Function;
Real Line;
Limit Process;
Uncertainty Principle;
Theta Function;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
An uncertainty principle for 2π-periodic functions and the classical Heisenberg
uncertainty principle are shown to be linked by a limit process. Dependent on a parameter, a
function on the real line generates periodic functions either by periodization or sampling. It is
proven that under certain smoothness conditions, the periodic uncertainty products of the generated
functions converge to the real-line uncertainty product of the original function if the parameter
tends to infinity. These results are used to find asymptotically optimal sequences for the periodic
uncertainty principle, based either on Theta functions or trigonometric polynomials obtained by
sampling B-splines.
机构:
Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191023, RussiaRussian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191023, Russia
机构:
Taibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawarah, Saudi ArabiaTaibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawarah, Saudi Arabia
Mejjaoli, Hatem
Trimeche, Khalifa
论文数: 0引用数: 0
h-index: 0
机构:
Fac Sci Tunis, Dept Math, Tunis 1060, TunisiaTaibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawarah, Saudi Arabia