Generalized Derivations of Hom–Lie Triple Systems

被引:0
|
作者
Jia Zhou
Liangyun Chen
Yao Ma
机构
[1] Jilin Agricultural University,College of Information Technology
[2] Northeast Normal University,School of Mathematics and Statistics
[3] University of Science and Technology of China,School of Mathematical Sciences
关键词
Hom–Lie triple systems; Generalized derivations; Centroids; 17A75; 17B30; 17B70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some properties of the generalized derivation algebra GDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T)$$\end{document} of a Hom–Lie triple systems T. In particular, we prove that GDer(T)=QDer(T)+QC(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T) = \mathrm{QDer}(T) + \mathrm{QC}(T)$$\end{document}, the sum of the quasiderivation algebra and the quasicentroid. We also prove that QDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{QDer}(T)$$\end{document} can be embedded as derivations in a larger Hom–Lie triple system. General results on centroids of Hom–Lie triple systems are also developed in this paper.
引用
收藏
页码:637 / 656
页数:19
相关论文
共 50 条
  • [1] Generalized Derivations of Hom-Lie Triple Systems
    Zhou, Jia
    Chen, Liangyun
    Ma, Yao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (02) : 637 - 656
  • [2] A note on generalized inner derivations of Hom-Lie triple systems
    Yara, Hamdiatou
    Zoungrana, Patricia L. L.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (07)
  • [3] Generalized Derivations on Lie Triple Systems
    Najati, Abbas
    RESULTS IN MATHEMATICS, 2009, 54 (1-2) : 143 - 147
  • [4] Generalized Derivations on Lie Triple Systems
    Abbas Najati
    Results in Mathematics, 2009, 54 : 143 - 147
  • [5] Generalized derivations of Lie triple systems
    Zhou, Jia
    Chen, Liangyun
    Ma, Yao
    OPEN MATHEMATICS, 2016, 14 : 260 - 271
  • [7] On generalized Jordan derivations of Lie triple systems
    Abbas Najati
    Czechoslovak Mathematical Journal, 2010, 60 : 541 - 547
  • [8] Commentary to: Generalized derivations of Lie triple systems
    Kaygorodov, Ivan
    Popov, Yury
    OPEN MATHEMATICS, 2016, 14 : 543 - 544
  • [9] Generalized Lie triple derivations
    Li, Hailing
    Wang, Ying
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (03): : 237 - 247
  • [10] Generalized Reynolds Operators on Hom-Lie Triple Systems
    Xiao, Yunpeng
    Teng, Wen
    Long, Fengshan
    SYMMETRY-BASEL, 2024, 16 (03):