Spectral sets and projections of operator polynomials

被引:0
|
作者
K.-H. Förster
B. Nagy
机构
[1] TU Berlin,
[2] FB Mathematik,undefined
[3] Sekr. Ma 6-4,undefined
[4] Straße des 17. Juni 136,undefined
[5] D-10623 Berlin,undefined
[6] Germany,undefined
[7] Department of Analysis,undefined
[8] Institute of Mathematics,undefined
[9] Technical University of Budapest,undefined
[10] H-1521 Budapest,undefined
[11] Hungary,undefined
来源
Archiv der Mathematik | 1997年 / 69卷
关键词
Banach Space; Linear Operator; Complex Number; Companion Operator; Integral Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Let L be a monic operator polynomial on a Banach space X. For a compact set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sigma $\end{document} of complex numbers X (L,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sigma $\end{document}) denotes the set of all vectors x such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^{-1}(\,\cdot\,)\,x $\end{document} has a holomorphic extension to the complement of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sigma $\end{document}. A relative open-and-closed subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sigma $\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sigma (L) $\end{document} (the spectrum of L) is called a spectral set of L if X (L,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sigma $\end{document}) + X (L,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sigma (L) \setminus \sigma )$\end{document} = X. The main characterization reads as follows: A set is a spectral set of L iff the corresponding spectral projection of the companion operator is block diagonal with identical projections as blocks. These projections have a contour integral representation and their ranges have the covenient properties reminiscent to the spectral theory of linear operators. The special cases of a singleton or a pole being a spectral set is characterized; in these cases certain special Jordan chains exist. Further, the connection between the spectral sets of two polynomials and the spectral sets of their product is studied.
引用
收藏
页码:40 / 51
页数:11
相关论文
共 50 条