On generalised subnormal subgroups of finite groups

被引:0
|
作者
A. Ballester-Bolinches
S. F. Kamornikov
V. N. Tyutyanov
机构
[1] Departament de Matemàtiques,Department of Mathematics
[2] Francisk Skorina State Gomel University,undefined
[3] Gomel Branch of International University “MITSO”,undefined
来源
Ricerche di Matematica | 2022年 / 71卷
关键词
Finite group; K-; -subnormal; Factorised group; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
All groups considered are finite. Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a formation. A subgroup H of a group G is called K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-subnormal in G if there exists a chain of subgroups H=H0⊆H1⊆⋯⊆Hn=G,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{n}=G, \end{aligned}$$\end{document}with Hi-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{i-1}$$\end{document} normal in Hi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{i}$$\end{document} or Hi/CoreHi(Hi-1)∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{i}/{{\,\mathrm{Core}\,}}_{H_{i}}(H_{i-1}) \in \mathcal {F}$$\end{document} for every 1≤i≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i \le n$$\end{document}. If F=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}= \mathcal {N}$$\end{document}, the formation of all nilpotent groups, the K-N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-subnormal subgroups of a group G are exactly the subnormal subgroups of G. The aim of this paper is to prove the following theorem: if F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is a subgroup-closed saturated lattice formation, then a subgroup H of a group G is K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-subnormal in G if and only if H is K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-subnormal in <H,x>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<H,x>$$\end{document} for all x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in G$$\end{document}. Some earlier results are consequence of this theorem.
引用
收藏
页码:205 / 209
页数:4
相关论文
共 50 条
  • [1] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, James
    Feldman, A. D.
    Ragland, M. F.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) : 1066 - 1071
  • [2] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Tyutyanov, V. N.
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 205 - 209
  • [3] On σ-Subnormal Subgroups of Finite Groups
    S. F. Kamornikov
    V. N. Tyutyanov
    Siberian Mathematical Journal, 2020, 61 : 266 - 270
  • [4] On σ-Subnormal Subgroups of Finite Groups
    Kamornikov, S. F.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (02) : 266 - 270
  • [5] On σ-Subnormal Subgroups of Finite Groups
    Guo, Wenbin
    Safonova, Inna N.
    Skiba, Alexander N.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2021, 45 (06) : 813 - 824
  • [6] FINITE GROUPS WITH WEAKLY SUBNORMAL AND PARTIALLY SUBNORMAL SUBGROUPS
    Huang, J.
    Hu, B.
    Skiba, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (01) : 169 - 177
  • [7] Finite Groups with Weakly Subnormal and Partially Subnormal Subgroups
    J. Huang
    B. Hu
    A. N. Skiba
    Siberian Mathematical Journal, 2021, 62 : 169 - 177
  • [8] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 595 - 610
  • [9] Permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Cossey, John
    Esteban-Romero, R.
    Ragland, M. F.
    Schmidt, Jack
    ARCHIV DER MATHEMATIK, 2009, 92 (06) : 549 - 557
  • [10] On Finite Groups with Pπ-Subnormal Subgroups
    Vasil'eva, T. I.
    Koranchuk, A. G.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 421 - 432