Machine learning and deep learning applications in microbiome research

被引:100
|
作者
Medina, Ricardo Hernandez [1 ]
Kutuzova, Svetlana [1 ,2 ]
Nielsen, Knud Nor [1 ,3 ]
Johansen, Joachim [1 ]
Hansen, Lars Hestbjerg [3 ]
Nielsen, Mads [2 ]
Rasmussen, Simon [1 ]
机构
[1] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Prot Res, DK-2200 Copenhagen N, Denmark
[2] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen O, Denmark
[3] Univ Copenhagen, Dept Plant & Environm Sci, DK-1871 Frederiksberg, Denmark
来源
ISME COMMUNICATIONS | 2022年 / 2卷 / 01期
关键词
MARKER;
D O I
10.1038/s43705-022-00182-9
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The many microbial communities around us form interactive and dynamic ecosystems called microbiomes. Though concealed from the naked eye, microbiomes govern and influence macroscopic systems including human health, plant resilience, and biogeochemical cycling. Such feats have attracted interest from the scientific community, which has recently turned to machine learning and deep learning methods to interrogate the microbiome and elucidate the relationships between its composition and function. Here, we provide an overview of how the latest microbiome studies harness the inductive prowess of artificial intelligence methods. We start by highlighting that microbiome data - being compositional, sparse, and high-dimensional - necessitates special treatment. We then introduce traditional and novel methods and discuss their strengths and applications. Finally, we discuss the outlook of machine and deep learning pipelines, focusing on bottlenecks and considerations to address them.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Editorial: Machine learning and deep learning applications in pathogenic microbiome research
    Chen, An-Tian
    Wu, Xinyan
    Ye, Gang
    Li, Wenle
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
  • [2] Overview of data preprocessing for machine learning applications in human microbiome research
    Ibrahimi, Eliana
    Lopes, Marta B.
    Dhamo, Xhilda
    Simeon, Andrea
    Shigdel, Rajesh
    Hron, Karel
    Stres, Blaz
    D'Elia, Domenica
    Berland, Magali
    Marcos-Zambrano, Laura Judith
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [3] Machine learning and deep learning in project analytics: methods, applications and research trends
    Uddin, Shahadat
    Yan, Sirui
    Lu, Haohui
    PRODUCTION PLANNING & CONTROL, 2024,
  • [4] Machine learning and deep learning: Introduction and applications
    Nakashima T.
    Zairyo, 2020, 9 (633-639): : 633 - 639
  • [5] Deep Learning and Machine Learning Applications in Biomedicine
    Yan, Peiyi
    Liu, Yaojia
    Jia, Yuran
    Zhao, Tianyi
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [6] A Review of Machine Learning and Deep Learning Applications
    Shinde, Pramila P.
    Shah, Seema
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [7] Machine learning on microbiome research in gastrointestinal cancer
    Cheung, Henley
    Yu, Jun
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2021, 36 (04) : 817 - 822
  • [8] Applications of Deep Learning and Machine Learning in Computational Medicine
    Adiga, Rama
    Biswas, Titas
    Shyam, Perugu
    JOURNAL OF BIOCHEMICAL TECHNOLOGY, 2023, 14 (01) : 1 - 6
  • [9] Intelligent imaging: Applications of machine learning and deep learning in radiology
    Currie, Geoff
    Rohren, Eric
    VETERINARY RADIOLOGY & ULTRASOUND, 2022, 63 : 880 - 888
  • [10] Advances in Artificial Intelligence, Machine Learning and Deep Learning Applications
    Haleem, Muhammad Salman
    ELECTRONICS, 2023, 12 (18)