Identifying a set of influential spreaders in complex networks

被引:0
|
作者
Jian-Xiong Zhang
Duan-Bing Chen
Qiang Dong
Zhi-Dan Zhao
机构
[1] Web Sciences Center,
[2] University of Electronic Science and Technology of China,undefined
[3] Big Data Research Center,undefined
[4] University of Electronic Science and Technology of China,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Identifying a set of influential spreaders in complex networks plays a crucial role in effective information spreading. A simple strategy is to choose top-r ranked nodes as spreaders according to influence ranking method such as PageRank, ClusterRank and k-shell decomposition. Besides, some heuristic methods such as hill-climbing, SPIN, degree discount and independent set based are also proposed. However, these approaches suffer from a possibility that some spreaders are so close together that they overlap sphere of influence or time consuming. In this report, we present a simply yet effectively iterative method named VoteRank to identify a set of decentralized spreaders with the best spreading ability. In this approach, all nodes vote in a spreader in each turn, and the voting ability of neighbors of elected spreader will be decreased in subsequent turn. Experimental results on four real networks show that under Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models, VoteRank outperforms the traditional benchmark methods on both spreading rate and final affected scale. What’s more, VoteRank has superior computational efficiency.
引用
收藏
相关论文
共 50 条
  • [1] Identifying a set of influential spreaders in complex networks
    Zhang, Jian-Xiong
    Chen, Duan-Bing
    Dong, Qiang
    Zhao, Zhi-Dan
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Correction: Corrigendum: Identifying a set of influential spreaders in complex networks
    Jian-Xiong Zhang
    Duan-Bing Chen
    Qiang Dong
    Zhi-Dan Zhao
    Scientific Reports, 6
  • [3] An improved voterank algorithm to identifying a set of influential spreaders in complex networks
    Li, Yaxiong
    Yang, Xinzhi
    Zhang, Xinwei
    Xi, Mingyuan
    Lai, Xiaochang
    FRONTIERS IN PHYSICS, 2022, 10
  • [4] Neighborhood coreness algorithm for identifying a set of influential spreaders in complex networks
    Yang, Xiong
    Huang, De-Cai
    Zhang, Zi-Ke
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (06): : 2979 - 2995
  • [5] IDENTIFYING AND RANKING INFLUENTIAL SPREADERS IN COMPLEX NETWORKS
    Liang, Zong-Wen
    Li, Jian-Ping
    2014 11TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2014, : 393 - 396
  • [6] Identifying influential spreaders in artificial complex networks
    Pei Wang
    Chengeng Tian
    Jun-an Lu
    Journal of Systems Science and Complexity, 2014, 27 : 650 - 665
  • [7] Identifying influential spreaders in artificial complex networks
    Wang Pei
    Tian Chengeng
    Lu Jun-an
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2014, 27 (04) : 650 - 665
  • [8] IDENTIFYING INFLUENTIAL SPREADERS IN ARTIFICIAL COMPLEX NETWORKS
    WANG Pei
    TIAN Chengeng
    LU Jun-an
    JournalofSystemsScience&Complexity, 2014, 27 (04) : 650 - 665
  • [9] Identifying a set of influential spreaders in complex networks (vol 6, 27823, 2016)
    Zhang, Jian-Xiong
    Chen, Duan-Bing
    Dong, Qiang
    Zhao, Zhi-Dan
    SCIENTIFIC REPORTS, 2016, 6
  • [10] A New Method for Identifying Influential Spreaders in Complex Networks
    Qiu, Liqing
    Liu, Yuying
    Zhang, Jianyi
    COMPUTER JOURNAL, 2024, 67 (01): : 362 - 375